[1]Amsden, A.A., O'Rourke, P.J. and Butler, T.D., 1989. KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos National Laboratory Report LA-11560-MS.
[2]Amsden, A.A., 1993. KIVA-3: A KIVA program with block-structured mesh for complex geometries. Los Alamos National Laboratory Report LA-12503-MS.
[3]Hessel, R.P., 1993. Numerical simulation of valved intake port and in-cylinder flows using KIVA 3. PhD Thesis, University of Wisconsin, US.
[4]Hirt, C.W., Amsden, A.A. and Cook, J.L., 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J.Comp.Phys., 14:227-243.
[5]Iwamolo, K.,Noma, K.,Nakayama, O.,Yamauchi, Y. and Ando, H., 1997.Development of gasoline direct injection engine.SAE 970541.
[6]Jones, P. and Junday, J.S., 1995. Full cycle computational fluid dynamics calculations in a motored valve pent roof combustion chamber and comparison with experiment. SAE 950286.
[7]Kaoru, Horic., Nishizawa, K., Ogawa, T., Akuzaki, S. and Miura, K., 1992. The development of a high fuel economy and high performance four-valved lean burn engine. SAE 920455.
[8]Kim, W.T., Huh, K.Y., Lee, J.W. and Kang, K.Y., 2000. Numerical simulation of intake and compression flow in a four-valve pent-roof spark ignition engine and validation with LDV data. Proc Instn Mech Engrs, 214(Part D): 361-372.
[9]Luo, M.J., Ye, X.M., Chen, G.H. and Jiang, Y.K., 2000. Three-dimensional block-structured body-fitted grid generation in intake manifolds of internal combustion engines. Journal of Huazhong University of Science And Technology, 28(12): 70-72(in Chinese).
[10]Luo, M.J., Chen, G.H., Ma, Y.H. and Ye, X.M., 2001. Study on Three-dimensional Flow Modeling of Multi-cylinder Vehicle Engine Inlet Manifold and its Application. Proceeding of the Eleventh International Pacific Conference on Automotive Engineering (in Chinese).
[11]Reeves, M., Towers, D.P., Tavender, B. and Buckbeny, C.H., 1999. A high-speed all-digital technique for cycle-resolved 2-D flow measurement and flow visualization within SI engine cylinders. Optics and Lasers Engineering, 31: 247-261.
[12]Reuss, D.L., Adrian, R.J., Landreth, C.C., French, D.T. and Fansler, T.D., 1989. Instantaneous planar measurements of velocity and large scale vorticity and strain rate in an engine using particle-image velocimetry. SAE 890616.
[13]Shi, S.X., 2001. Recent progress in combustion technologies for automotive engines. Combustion Science and Technology, 7(1): 1-15(in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>