CLC number: TQ927
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 8
Clicked: 7031
JIN Zhi-hua, LIN Jian-ping, CEN Pei-lin. Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei[J]. Journal of Zhejiang University Science A, 2004, 5(12): 1590-1596.
@article{title="Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei",
author="JIN Zhi-hua, LIN Jian-ping, CEN Pei-lin",
journal="Journal of Zhejiang University Science A",
volume="5",
number="12",
pages="1590-1596",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1590"
}
%0 Journal Article
%T Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei
%A JIN Zhi-hua
%A LIN Jian-ping
%A CEN Pei-lin
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 12
%P 1590-1596
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1590
TY - JOUR
T1 - Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei
A1 - JIN Zhi-hua
A1 - LIN Jian-ping
A1 - CEN Pei-lin
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 12
SP - 1590
EP - 1596
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1590
Abstract: Study of the effect of dissolved oxygen and shear stress on rifamycin B fermentation with A. mediterranei XC 9-25 showed that rifamycin B fermentation with amycolatoposis mediterranei XC 9-25 needs high dissolved oxygen and is not very sensitive to shearing stress. The scale-up of rifamycin B fermentation with A. mediterranei XC 9-25 from a shaking flask to a 15 L fermentor was realized by controlling the dissolved oxygen to above 25% of saturation in the fermentation process, and the potency of rifamycin B fermentation in the 15 L fermentor reached 10 g/L after 6-day batch fermentation. By continuously feeding glucose and ammonia in the fermentation process, the potency of rifamycin B fermentaion in the 15 L fermentor reached 18.67 g/L, which was 86.65% higher than that of batch fermentation. Based on the scale-up principle of constantly aerated agitation power per unit volume, the scale-up of rifamycin B fed-batch fermentation with continuous feed from a 15 L fermentor to a 7 m3 fermentor and further to a 60 m3 fermentor was realized successfully. The potency of rifamycin B fermentation in the 7 m3 fermentor and in the 60 m3 fermentor reached 17.25 g/L and 19.11 g/L, respectively.
[1] Bader, F.G., 1986. Modeling mass transfer and agitator per-formance in multiturbine fermentor. Biotechnol Bioeng, 30:37-51.
[2] Chen, J.M., Xu, L.T., 1991. Analysis of Antibiotic Industry. Chinese Press of Pharmaceutical Science, Beijing, p. 109-111 (in Chinese).
[3] Gao, K.N., 1989. Fermentation Engineering and Equipment. Press of Light Industry, Beijing, p.188-222 (in Chinese).
[4] Ghisalba, O., Nüesch, J., 1981. A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. IV Identification of 3-amino-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter-unit. J Antibiot, 34:67-71.
[5] Jin, Z.H., Lin, J.P., Xu, Z.N., Cen, P.L., 2002. Improvement of industry-applied rifamycin B producing strain, Amycolatopsis mediterranei, by rational screening. J Gen Appl Microbiol, 48:329-334.
[6] Kibby, J.J., McDonald, I.A., Richards, W.R., 1980. 3-Amino-5-hydroxybenzoic acid as a key intermediate in asamycin and maytansinoid biosynthesis. J Chem Soc Chem Commun, 1980:768-769.
[7] Lancini, G., Carvelieri, B., 1997. Rifamycins. In: Strohl, W. R. (Ed.), Biotechnology of Antibiotics, vol. 2. Dekker, New York, p.521-549.
[8] Leblihi, A., Germain, P., Lefebvre, G., 1987. Phosphate repression of cephamycin and clavulanic acid production by Streptomyces clavuligerus. Appl Microbiol Biotechnol, 28:44-51.
[9] Oosterhuis, N.M.G., Kossen, N.W.F., 1983. Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng, 26:546-550.
[10] Oppolzer, W., Prelog, V., 1973. On the constitution and cofiguration of rifamycin B, O, S and SV. Helv Chim Acta, 56:2287-2314.
[11] Rinehart, K.L.Jr., Shield, L.S., 1976. Chemistry of the ansamycin antibiotics. Fortschr Chem Org Naturst, 33:231-307.
[12] Sensi, P., Thiemann, J.E., 1967. Production of rifamycins. Prog Ind Microbiol, 6:21-59.
[13] Sensi, P., Margalis, P., Timbal, M.T., 1959. Rifamycin, a new antibiotic: preliminary report. Farmaco Ed Sci, 14:146-147.
[14] Sepkowitz, K.A., Rafalli, J., Riley, L., Kiehn, T.E., Armstrong, D., 1995. Tuberculosis in the AIDS era. Clin Microbiol Revs, 8:180-199.
[15] Shuler, F.L., Kargi, F., 1992. Bioprocess Engineering: Basic Concepts. Prentice-Hall, Englewood Cliffs, NJ.
[16] Ziegler, H., Dunn, I.J., Bourine, J.R., 1980. Oxygen transfer and mycelial growth in a tubular loop fermentor. Biotechnol Bioeng, 22:1613-163.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Hemlata@SRTM University, Nanded<bhoslehemlata@gmail.com>
2014-04-26 18:54:39
I need this paper for details of rifamycin production