CLC number: TP183
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 8
Clicked: 17617
ZHANG Li-ping, YU Huan-jun, HU Shang-xu. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University Science A, 2005, 6(6): 528-534.
@article{title="Optimal choice of parameters for particle swarm optimization",
author="ZHANG Li-ping, YU Huan-jun, HU Shang-xu",
journal="Journal of Zhejiang University Science A",
volume="6",
number="6",
pages="528-534",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0528"
}
%0 Journal Article
%T Optimal choice of parameters for particle swarm optimization
%A ZHANG Li-ping
%A YU Huan-jun
%A HU Shang-xu
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 6
%P 528-534
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0528
TY - JOUR
T1 - Optimal choice of parameters for particle swarm optimization
A1 - ZHANG Li-ping
A1 - YU Huan-jun
A1 - HU Shang-xu
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 6
SP - 528
EP - 534
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0528
Abstract: The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the performance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and improper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper.
[1] Carlisle, A., Dozier, G., 2001. An Off-the-shelf PSO. Proceedings of the Workshop on Particle Swarm Optimization, p.1-6.
[2] Clerc, M., 1999. The Swarm and Queen: Towards A Deterministic and Adaptive Particle Swarm Optimization. Proceedings of the IEEE Congress on Evolutionary Computation, p.1951-1957.
[3] Clerc, M., Kennedy, J., 2002. The particle swarm(explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation, 6(1):58-73.
[4] Eberhart, R.C., Kennedy, J., 1995. A New Optimizer Using Particle Swarm Theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, p.39-43.
[5] Eberhart, R.C., Shi, Y., 2000. Comparing Inertia Weight and Constriction Factors in Particle Swarm Optimization. Proceedings of the IEEE Congress on Evolutionary Computation, San Diego, CA, p.84-88.
[6] Eberhart, R.C., Shi, Y., 2001. Particle Swarm Optimization: Developments, Applications and Resources. Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Korea, p.81-86.
[7] Eberhart, R.C., Simpson, P.K., Dobbins, R.W., 1996. Computational Intelligence PC Tools. Academic Press Professional. Boston, MA.
[8] El-Gallad, A.I., El-Hawary, M.E., Sallam, A.A., Kalas, A., 2002. Enhancing the Particle Swarm Optimizer via Proper Parameters Selection. Canadian Conference on Electrical and Computer Engineering, p.792-797.
[9] Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, p.1942-1948.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
suguna@No address<No mail>
2013-04-27 02:09:46
nice
Bandla Sreenivasa Rao@No address<sreenibandla@yahoo.com>
2011-07-20 18:21:49
Thank YOu
Richard Medina<erndres@hotmail.com>
2010-10-25 01:58:31
thanks for the article
Chawalsak@UTM<chaliaw_utm@hotmail.com>
2010-10-15 21:04:02
good idea