CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5849
ZHAO Xiang-jun, ZHANG Hong-xin, BAO Hu-jun. Adaptive sampling for mesh spectrum editing[J]. Journal of Zhejiang University Science A, 2006, 7(7): 1193-1200.
@article{title="Adaptive sampling for mesh spectrum editing",
author="ZHAO Xiang-jun, ZHANG Hong-xin, BAO Hu-jun",
journal="Journal of Zhejiang University Science A",
volume="7",
number="7",
pages="1193-1200",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1193"
}
%0 Journal Article
%T Adaptive sampling for mesh spectrum editing
%A ZHAO Xiang-jun
%A ZHANG Hong-xin
%A BAO Hu-jun
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 7
%P 1193-1200
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1193
TY - JOUR
T1 - Adaptive sampling for mesh spectrum editing
A1 - ZHAO Xiang-jun
A1 - ZHANG Hong-xin
A1 - BAO Hu-jun
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 7
SP - 1193
EP - 1200
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1193
Abstract: A mesh editing framework is presented in this paper, which integrates Free-Form Deformation (FFD) and geometry signal processing. By using simplified model from original mesh, the editing task can be accomplished with a few operations. We take the deformation of the proxy and the position coordinates of the mesh models as geometry signal. Wavelet analysis is employed to separate local detail information gracefully. The crucial innovation of this paper is a new adaptive regular sampling approach for our signal analysis based editing framework. In our approach, an original mesh is resampled and then refined iteratively which reflects optimization of our proposed spectrum preserving energy. As an extension of our spectrum editing scheme, the editing principle is applied to geometry details transferring, which brings satisfying results.
[1] Desbrun, M., Meyer, M., Alliez, P., 2002. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 21(3):209-218.
[2] Forsey, D.R., Bartels, R.H., 1988. Hierarchical B-spline refinement. Computer Graphics Proceedings, (SIGGRAPH’88), 22(4):205-212.
[3] Gu, X.F., Gortler, S., Hoppe, H., 2002. Geometry images. ACM Trans. Graph (SIGGRAPH’02), 21(3):355-361.
[4] Guskov, I., Sweldens, W., Schröder, P., 1999. Multiresolution signal processing for meshes. Computer Graphics (SIGGRAPH’99), 33:325-334.
[5] Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P., 1998. Interactive multiresolution modeling on arbitrary meshes. Computer Graphics (SIGGRAPH’98), 32:105-144.
[6] Kraevoy, V., Sheffer, A., 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph., 23(3):861-869.
[7] Praun, E., Sweldens, W., Schröder, P., 2001. Consistent mesh parameterization. ACM Proc. SIGGRAPH’01, p.179-184.
[8] Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. Computer Graphics (SIGGRAPH’86), 20(4):151-160.
[9] Singh, K., Fiume, E., 1998. Wires: A geometric deformation technique. Computer Graphics (SIGGRAPH’98), 32:405-414.
[10] Yoshizawa, S., Belyaev, A., Seidel, H.P., 2004. A Fast and Simple Stretch-Minimizing Mesh Parameterization. Proceedings of the Shape Modelling International 2004 (SMI’04), IEEE Computer Society.
[11] Zhao, X.J., Zhang, H.X., Bao, H.J., 2004. Mesh editing based on geometry signal spectrum analysis. Journal of Software, 15(suppl.):149-156 (in Chinese).
[12] Zhou, K., 2002. Digital Geometry Processing: Theory and Applications. Ph.D Thesis, Zhejiang University, Hangzhou, China (in Chinese).
[13] Zorin, D., Schröder, P., Sweldens, W., 1997. Interactive multiresolution mesh editing. Computer Graphics (SIGGRAPH’97), 31:259-268.
Open peer comments: Debate/Discuss/Question/Opinion
<1>