CLC number: O343.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 8340
CHERALATHAN M., VELRAJ R., RENGANARAYANAN S.. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system[J]. Journal of Zhejiang University Science A, 2006, 7(11): 1886-1895.
@article{title="Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system",
author="CHERALATHAN M., VELRAJ R., RENGANARAYANAN S.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="11",
pages="1886-1895",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1886"
}
%0 Journal Article
%T Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system
%A CHERALATHAN M.
%A VELRAJ R.
%A RENGANARAYANAN S.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 11
%P 1886-1895
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1886
TY - JOUR
T1 - Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system
A1 - CHERALATHAN M.
A1 - VELRAJ R.
A1 - RENGANARAYANAN S.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 11
SP - 1886
EP - 1895
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1886
Abstract: This work investigates the transient behaviour of a phase change material based energy storage (CTES)%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
[1] Adref, K.T., Eames, I.W., 2002. Experiments on charging and discharging of spherical thermal (ice) storage elements. Int. J. Energy Rese., 26(11):949-964.
[2] Arnold, D., 1990. Dynamic simulation of encapsulated ice stores. Part I: the model. ASHRAE Trans., 96(1):1103-1110.
[3] Arnold, D., Eng, C., 1991. Laboratory performance of an encapsulated ice store. ASHRAE Trans., 97(2):1245-1254.
[4] Barba, A., Spiga, M., 2003. Discharge mode for encapsulated PCMs in storage tanks. Solar Energy, 74(2):141-148.
[5] Bedecarrats, J.P., Strub, F., Falcon, B., Dumas, J.P., 1996. Phase-change thermal energy storage using spherical capsules: performance of a test plant. Int. J. Refrig., 19(3):187-196.
[6] Bilir, L., Ilken, Z., 2005. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl. Therm. Eng., 25(10):1488-1502.
[7] Chen, S.L., Chen, C.L., Tin, C.C., Lee, T.S., Ke, M.C., 2000. An experimental investigation of cold storage in an encapsulated thermal storage tank. Experimental Thermal and Fluid Science, 23(3-4):133-144.
[8] Chen, S.L., Yue, J.S., 1991a. Thermal performance of cool storage in packed capsules for air conditioning. Heat Recovery Systems & CHP, 11(6):551-561.
[9] Chen, S.L., Yue, J.S., 1991b. A simplified analysis for cold storage in porous capsules with solidification. ASME J. Energy Resour. Technol., 113:108-116.
[10] Cho, K., Choi, S.H., 2000. Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes. Int. J. Heat Mass and Transfer, 43(17):3183-3196.
[11] Eames, I.W., Adref, K.T., 2002. Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Appl. Therm. Eng., 22(7):733-745.
[12] He, B., Setterwall, F., 2002. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation. Energy Conversion and Management, 43(13):1709-1723.
[13] Ismail, K.A.R., Henriquez, J.R., 2002. Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl. Therm. Eng., 22(15):1705-1716.
[14] Ismail, K.A.R., Stuginsky, R., 1999. A parametric study on possible fixed bed models for PCM sensible heat storage. Appl. Therm. Eng., 19(7):757-788.
[15] Kousksou, T., Bedecarrats, J.P., Dumas, J.P., Mimet, A., 2005. Dynamic modelling of the storage of an encapsulated ice tank. Appl. Therm. Eng., 25(10):1534-1548.
[16] Omari, K.E., Dumas, J.P., 2004. Crystallization of supercooled spherical nodules in a flow. Int. J. Thermal Sciences, 43(12):1171-1180.
[17] Ryu, H.W., Hong, S.A., Shin, B.C., Kim, S.D., 1991. Heat transfer characteristics of cool thermal storage systems. Energy, 16(4):727-737.
[18] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., Schwarzer, K., 1997. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Solar Energy, 60(5):281-290.
[19] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., Schwarzer, K., 1999. Heat transfer enhancement in a latent heat storage system. Solar Energy, 65(3):171-180.
Open peer comments: Debate/Discuss/Question/Opinion
<1>