Full Text:   <2164>

CLC number: O174.5

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3876

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.101 P.198-202

http://doi.org/10.1631/jzus.2006.AS0198


A problem on extremal quasiconformal extensions


Author(s):  Chen Zhi-Guo

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   zgchen@zju.edu.cn

Key Words:  Quasisymmetric mapping, Extremal quasiconformal mapping, Universal Teichmü, ller space, Non-Strebel point


Chen Zhi-Guo. A problem on extremal quasiconformal extensions[J]. Journal of Zhejiang University Science A, 2006, 7(101): 198-202.

@article{title="A problem on extremal quasiconformal extensions",
author="Chen Zhi-Guo",
journal="Journal of Zhejiang University Science A",
volume="7",
number="101",
pages="198-202",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.AS0198"
}

%0 Journal Article
%T A problem on extremal quasiconformal extensions
%A Chen Zhi-Guo
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 101
%P 198-202
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.AS0198

TY - JOUR
T1 - A problem on extremal quasiconformal extensions
A1 - Chen Zhi-Guo
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 101
SP - 198
EP - 202
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.AS0198


Abstract: 
In this paper we give a short survey on a problem on extremal quasiconformal extensions. It had been a conjecture for a long time that the dilatations K0(h) and K1(h) are equal before Anderson and Hinkkanen disproved this by constructing concrete examples of a family of affine mappings of some parallelograms. The problem also engendered many interesting results. At the end of the current paper, we discuss relationships among K0(h), H(h) and K1(h) as a concluding remark.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Ahlfors, L.V., 1966. Lectures on Quasiconformal Mappings. Van Nostrand, New York.

[2] Anderson, J.M., Hinkkanen, A., 1995. Quadrilaterals and extremal quasiconformal extensions. Comment. Math. Helv., 70:455-474.

[3] Chen, J., Chen, Z., 1997. A Remark on “An approximation condition and extremal quasiconformal extensions”. Chinese Science Bull., 42:1765-1767.

[4] Chen, J., Zhu, H., Liang, X., 2002. Quadrilateral and substantial boundary points. Chinese Annals of Math., 23A(2):197-204 (in Chinese).

[5] Earle, C., Li, Z., 1999. Isometrically embedded polydisks in infinite dimensional Teichmüller spaces. J. Geom. Anal., 9(1):51-71.

[6] Fehlmann, R., 1982. Quasiconformal mappings with free boundary components. Annal. Acad. Sci. Fenn., A.I. Math., 7:337-347.

[7] Krushkal, S.L., 2003. Polygon quasiconformal maps and Grunsky inequalities. J. Anal. Math., 90:175-196.

[8] Kühnau, R.K., 2000. Drei Funktionale eines Quasikreises. Annal. Acad. Sci. Fenn., A.I. Math., 25:413-415.

[9] Lakic, N., 1995. Strebel Points, Lipa’s Legacy. Proceedings of the Bers Colloquium, New York, p.417-431.

[10] Lehto, O., Virtanen, K.I., 1973. Quasiconformal Mappings in the Plane. Springer, Berlin.

[11] Li, Z., Wu, S., Qi, Y., 1999. A class of quasisymmetric mappings and substantial boundary points. Chinese Science Bull., 44:926-930 (in Chinese).

[12] Liang, X., Zhu, H., 2001. An extremal problem of quasi-conformal mappings in hyperbolic regions. Journal of Fudan University, 40(6):645-648.

[13] Qi, Y., 1998. A problem in extremal quasiconformal extensions. Sci. in China, Series A, 41(11):1135-1141.

[14] Reich, E., 1997. An approximation condition and extremal quasiconformal extensions. Proc. Amer. Math. Soc., 125(5):1479-1481.

[15] Reich, E., Strebel, K., 1974. Extremal Quasiconformal Mappings with Given Boundary Values. In: Contributions to Analysis. Academic Press, p.375-391.

[16] Shen, Y., 2000. A counterexample theorem in extremal quasiconformal mapping theory. Sci. in China, Series A, 43(9):929-936.

[17] Strebel, K., 1976. On the existence of extremal Teichmüller mappings. J. D’Analyse Math., 30:464-480.

[18] Strebel, K., 1999. On the dilatation of extremal quasiconformal mappings of polygons. Comment. Math. Helv., 74(1):143-149.

[19] Wu, S., 1997. Moduli of quadrilaterals and extremal quasi-conformal extensions of quasisymmetric functions. Comment. Math. Helv., 72(4):593-604.

[20] Yang, S., 1997. On dilatations and substantial boundary points of homeomorphims of Jordan curves. Results in Math., 31:180-188.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE