CLC number: TB6; TK91
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 8
Clicked: 6057
JIN Tao, ZHANG Bao-sen, TANG Ke, BAO Rui, CHEN Guo-bang. Experimental observation on a small-scale thermoacoustic prime mover[J]. Journal of Zhejiang University Science A, 2007, 8(2): 205-209.
@article{title="Experimental observation on a small-scale thermoacoustic prime mover",
author="JIN Tao, ZHANG Bao-sen, TANG Ke, BAO Rui, CHEN Guo-bang",
journal="Journal of Zhejiang University Science A",
volume="8",
number="2",
pages="205-209",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0205"
}
%0 Journal Article
%T Experimental observation on a small-scale thermoacoustic prime mover
%A JIN Tao
%A ZHANG Bao-sen
%A TANG Ke
%A BAO Rui
%A CHEN Guo-bang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 205-209
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0205
TY - JOUR
T1 - Experimental observation on a small-scale thermoacoustic prime mover
A1 - JIN Tao
A1 - ZHANG Bao-sen
A1 - TANG Ke
A1 - BAO Rui
A1 - CHEN Guo-bang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 205
EP - 209
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0205
Abstract: A miniature thermoacoustic prime mover, consuming heat to radiate sound, may be considered as a potential way of heat management in microcircuits because of its simplicity and stability. A prototype with variable resonant tube length of 10 to 25 cm was built, and experiments were carried out to observe its performance, such as onset temperature, oscillation amplitude and operating frequency. The results with atmospheric air showed that proper structures and operating conditions can make the system start an oscillation at a temperature lower than 100 °C, which proves the feasibility of potential usage in electronic units. The influences of stack position, heat input power or tube inclination on the oscillation amplitude, onset temperature and operating frequency are also presented.
[1] Backhaus, S., Swift, G.W., 1999. A thermoacoustic-stirling heat engine. Nature, 399(6734):335-338.
[2] Bastyr, K.J., Keolian, R.M., 2003. High-frequency thermoacoustic-stirling heat engine demonstration device. Acoustics Research Letters Online, 4(2):37-40.
[3] Chen, G.B., Jin, T., 1999. Experimental investigation on the onset and damping behavior in the thermoacoustic oscillation. Cryogenics, 39(10):843-846.
[4] Garrett, S.L., Adeff, J.A., Hofler, T.J., 1993. Thermoacoustic refrigerator for space applications. J. of Thermophysics and Heat Transfer, 7(4):595-599.
[5] Garrett, S.L., Chen, R.L., 2000. Build an ‘Acoustic Laser’. Echoes, 10(3):4-5.
[6] Hofler, T.J., Adeff, J.A., 2001. A Miniature Thermoacoustic Refrigerator for ICs. Proceedings of 17th International Congress on Acoustics, Roma, 4B.02.01.
[7] Jin, T., Fan, L., Wang, B.R., Chen, G.B., 2004. PZT driven miniature thermoacoustic refrigerator. Journal of Engineering Thermophysics, 25(5):776-778 (in Chinese).
[8] Liu, Y.C., 2004. Study on the Miniaturization of Thermoacoustic Refrigerator. Ph.D Thesis, Huazhong University of Science and Technology, China (in Chinese).
[9] Symko, O.G., Abdel-Rahman, E., Kwon, Y.S., Emmi, M., Behunin, R., 2004. Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal, 35(2):185-191.
[10] Tsai, C.L., Chen, R.L., Chen, C.L., DeNatale, J., 2002. Micro-machined Stack Component for Miniature Thermoacoustic Refrigerator. Proc. of 15th IEEE International Conference on Micro-Electro-Mechanical Systems, Piscataway, NJ, p.149-151.
[11] Zhou, S.L., Matsubara, Y., 1998. Experimental research of thermoacoustic prime mover. Cryogenics, 38(8):813-822.
Open peer comments: Debate/Discuss/Question/Opinion
<1>