CLC number: R338; TP8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 29
Clicked: 6429
FENG Zhou-yan, CHEN Wei-dong, YE Xue-song, ZHANG Shao-min, ZHENG Xiao-jing, WANG Peng, JIANG Jun, JIN Lin, XU Zhi-jian, LIU Chun-qing, LIU Fu-xin, LUO Jian-hong, ZHUANG Yue-ting, ZHENG Xiao-xiang. A remote control training system for rat navigation in complicated environment[J]. Journal of Zhejiang University Science A, 2007, 8(2): 323-330.
@article{title="A remote control training system for rat navigation in complicated environment",
author="FENG Zhou-yan, CHEN Wei-dong, YE Xue-song, ZHANG Shao-min, ZHENG Xiao-jing, WANG Peng, JIANG Jun, JIN Lin, XU Zhi-jian, LIU Chun-qing, LIU Fu-xin, LUO Jian-hong, ZHUANG Yue-ting, ZHENG Xiao-xiang",
journal="Journal of Zhejiang University Science A",
volume="8",
number="2",
pages="323-330",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0323"
}
%0 Journal Article
%T A remote control training system for rat navigation in complicated environment
%A FENG Zhou-yan
%A CHEN Wei-dong
%A YE Xue-song
%A ZHANG Shao-min
%A ZHENG Xiao-jing
%A WANG Peng
%A JIANG Jun
%A JIN Lin
%A XU Zhi-jian
%A LIU Chun-qing
%A LIU Fu-xin
%A LUO Jian-hong
%A ZHUANG Yue-ting
%A ZHENG Xiao-xiang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 323-330
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0323
TY - JOUR
T1 - A remote control training system for rat navigation in complicated environment
A1 - FENG Zhou-yan
A1 - CHEN Wei-dong
A1 - YE Xue-song
A1 - ZHANG Shao-min
A1 - ZHENG Xiao-jing
A1 - WANG Peng
A1 - JIANG Jun
A1 - JIN Lin
A1 - XU Zhi-jian
A1 - LIU Chun-qing
A1 - LIU Fu-xin
A1 - LUO Jian-hong
A1 - ZHUANG Yue-ting
A1 - ZHENG Xiao-xiang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 323
EP - 330
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0323
Abstract: A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forebrain bundle (MFB).
[1] Bear, M.F., Connors, B.W., Paradiso, M.A., 2001. Neuroscience: Exploring the Brain (2nd Ed.). Lippincott Williams & Wilkins, Baltimore, MD.
[2] Hermer-Vazquez, L., Hermer-Vazquez, R., Rybinnik, I., Greebel, G., Keller, R., Xu, S., Chapin, J.K., 2005. Rapid learning and flexible memory in “habit” tasks in rats trained with brain stimulation reward. Physiol. Behav., 84(5):753-759.
[3] Lindner, M.D., Plone, M.A., Francis, J.M., Blaney, T.J., Salamone, J.D., Emerich, D.F., 1997. Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behav. Brain Res., 86(1):25-40.
[4] Lou, M., Eschenfelder, C.C., Herdegen, T., Brecht, S., Deuschl, G., 2004. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke, 35(2):578-83.
[5] Masino, S.A., 2003. Quantitative comparison between functional imaging and single-unit spiking in rat somatosensory cortex. J. Neurophysiol., 89(3):1702-1712.
[6] Paxinos, G., Watson, C., 1997. The Rat Brain in Stereotaxic Coordinates (3rd Ed.). Academic Press, San Diego, CA.
[7] Reynolds, J.N., Hyland, B.I., Wickens, J.R., 2001. A cellular mechanism of reward-related learning. Nature, 413(6851):67-70.
[8] Romo, R., Hernandez, A., Zainos, A., Brody, C.D., Lemus, L., 2000. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron, 26(1):273-278.
[9] Simons, D.J., 1978. Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol., 41(3):798-820.
[10] Simons, D.J., 1983. Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res., 276(1):178-182.
[11] Song, W.G., Chai, J., Han, T.Z., Yuan, K., 2006. A remote controlled multimode micro-stimulator for freely moving animals. Sheng Li Xue Bao, 58(2):183-188.
[12] Talwar, S.K., Xu, S., Hawley, E.S., Weiss, S.A., Moxon, K.A., Chapin, J.K., 2002. Rat navigation guided by remote control. Nature, 417(6884):37-38.
[13] Tehovnik, E.J., 1996. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods, 65(1):1-17.
[14] Wang, Y., Su, X.C., Wang, M., 2006. A telemetry navigation system for animal-robots. Robot, 28(2):183-186.
[15] Xu, S., Talwar, S.K., Hawley, E.S., Li, L., Chapin, J.K., 2004. A multi-channel telemetry system for brain microstimulation in freely roaming animals. J. Neurosci. Methods, 133(1-2):57-63.
Open peer comments: Debate/Discuss/Question/Opinion
<1>