CLC number: TQ021.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 7200
MEI Cong-li, SU Hong-ye, CHU Jian. Detection of gross errors using mixed integer optimization approach in process industry[J]. Journal of Zhejiang University Science A, 2007, 8(6): 904-909.
@article{title="Detection of gross errors using mixed integer optimization approach in process industry",
author="MEI Cong-li, SU Hong-ye, CHU Jian",
journal="Journal of Zhejiang University Science A",
volume="8",
number="6",
pages="904-909",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0904"
}
%0 Journal Article
%T Detection of gross errors using mixed integer optimization approach in process industry
%A MEI Cong-li
%A SU Hong-ye
%A CHU Jian
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 6
%P 904-909
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0904
TY - JOUR
T1 - Detection of gross errors using mixed integer optimization approach in process industry
A1 - MEI Cong-li
A1 - SU Hong-ye
A1 - CHU Jian
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 6
SP - 904
EP - 909
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0904
Abstract: A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information criterion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
[1] Arora, A.L., Biegler, L.T., 2001. Redescending estimators for data reconciliation and parameter estimation. Computers and Chem. Eng., 25:1585-1599.
[2] Bagajewicz, M., Jiang, Q., 1998. Gross error modeling and detection in plant linear dynamic reconciliation. Computers and Chem. Eng., 22(12):1789-1810.
[3] Crowe, C.M., Garcia Campos, Y.A., Hrymak, A., 1983. Reconciliation of process flow rates by matrix projection. Part I: linear case. Am. Inst. Chem. Eng. J., 29(6):881-888.
[4] Heenan, W.A., Serth, R.W., 1986. Gross errors detection and data reconciliation in steam-metering system. Am. Inst. Chem. Eng. J., 32:733-742.
[5] Mah, R.S.H., Stanley, G., Downing, D., 1976. Reconciliation and rectification of process flow and inventory data. Ind. Eng. Chem. Process Design Dev., 15:175-183.
[6] Mah, R.S.H., Tamhane, A.C., 1982. Detection of gross errors in process data. Am. Inst. Chem. Eng. J., 28:828-830.
[7] Narasimhan, S., Mah, R., 1987. Generalized likelihood ratio method for gross error identification. Am. Inst. Chem. Eng. J., 33:1514-1521.
[8] Reilly, P., Carpani, R., 1963. Application of Statistical Theory of Adjustments to Material Balances. Proc. 13th Can. Chem. Eng. Conf. Montreal, Quebec.
[9] Rollins, D., Davis, J., 1992. Unbiased estimation of gross errors in process measurements. Am. Inst. Chem. Eng. J., 38:563-572.
[10] Sanchez, M., Romagnoli, J., Jiang, Q., Bagajewicz, M., 1999. Simultaneous estimation of biases and leaks in process plants. Computers and Chem. Eng., 23:841-857.
[11] Soderstrom, T.A., Himmelblau, D.M., Edgar, T.F., 2001. A mixed integer optimization approach for simultaneous data reconciliation and identification of measurement bias. Control Eng. Practice, 9:869-876.
[12] Tong, H., Crowe, C.M., 1995. Detection of gross errors in data reconciliation by principal component analysis. Am. Inst. Chem. Eng. J., 41:1712-1722.
[13] Yamamura, K., Nakajima, M., Matsuyama, H., 1988. Detection of gross errors in process data using mass and energy balances. Int. Chem. Eng., 28(1):91-98.
Open peer comments: Debate/Discuss/Question/Opinion
<1>