CLC number: X53; Q945
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6201
LI Ting-qiang, YANG Xiao-e, MENG Fan-hua, LU Ling-li. Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance[J]. Journal of Zhejiang University Science B, 2007, 8(2): 111-115.
@article{title="Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance",
author="LI Ting-qiang, YANG Xiao-e, MENG Fan-hua, LU Ling-li",
journal="Journal of Zhejiang University Science B",
volume="8",
number="2",
pages="111-115",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.B0111"
}
%0 Journal Article
%T Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance
%A LI Ting-qiang
%A YANG Xiao-e
%A MENG Fan-hua
%A LU Ling-li
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 2
%P 111-115
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0111
TY - JOUR
T1 - Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance
A1 - LI Ting-qiang
A1 - YANG Xiao-e
A1 - MENG Fan-hua
A1 - LU Ling-li
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 2
SP - 111
EP - 115
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0111
Abstract: Radiotracer techniques were employed to characterize 65zn adsorption and desorption in root-cell-wall of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of 65zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more 65zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of 65zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more 65zn accumulated in desorbed root-cell-wall of NHE. zn2+ binding in root-cell-wall preparations of NHE was greater than that in HE under high zn2+ concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb zn2+, whereas the desorption characteristics were different, and with most of 65zn binding on root of HE being available for loading into the xylem, as a result, more 65zn was translocated to the shoot.
[1] Bañuelos, G.S., 2006. Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ. Pollut., 144(1):19-23.
[2] Bryant, P.S., Petersen, J.N., Lee, J.M., Brouns, T.M., 1992. Sorption of heavy metals by untreated red fir sawdust. Appl. Biochem. Biotechnol., 34/35:777-788.
[3] Chen, J.P., 1997. Batch and continuous adsorption of strontium by plant root tissues. Bioresour. Technol., 60(3):185-189.
[4] de Lurdes, M., Sigg, S.G., Reutlinger, M., Stumm, W., 1987. Metal ion binding by biological surfaces: voltammetric assessment in the presence of bacteria. Sci. Tot. Environ., 60:105-119.
[5] Ebbs, S.D., Kochian, L.V., 1997. Toxicity of zinc to Brassica species: implication for phytoremediation. J. Environ. Quality, 26(3):776-781.
[6] Fritioff, A., Greger, M., 2006. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63(2):220-227.
[7] Geesey, G.G., Richardson, W.T., Yeomans, H.G., Irvin, R.T., Costerton, J.W., 1977. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol., 23:1733-1736.
[8] Hart, J.J., DiTomaso, J.M., Linscott, D.L., Kochian, L.V., 1992. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic. Biochem. Physiol., 43(3):212-222.
[9] Lasat, M.M., Baker, A.J., Kochian, L.V., 1996. Physoilogical characterisation of root Zn2+ absorption and translocation to shoots in hyperaccumulator and non-hyperaccumulator species of Thlaspi. Plant Physiol., 112:1715-1722.
[10] Li, T.Q., Yang, X.E., He, Z.L., Yang, J.Y., 2005. Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Int. Plant Biol., 47(8):927-934.
[11] Mahmood, S.K., Rama, R.P., 1993. Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol., 50(4):486-491.
[12] Marschner, H., 1995. Mineral Nutrition of Higher Plants, 2nd Ed. Academic Press, San Diego, CA, USA.
[13] McGrath, S.P., Zhao, F.J., 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol., 14(3):277-282.
[14] Nishizono, H., Ichikawa, H., Suziki, S., Ishii, F., 1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil, 101(1):15-20.
[15] Prasad, M.N.V., Freitas, H., 2000. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ. Pollut., 110(2):277-283.
[16] Raskin, I., Kumar, P.B.A., Dushenkow, S., Salt, D.E., 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 8(2):221-226.
[17] Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49(1):643-668.
[18] Santos, F.S., Hernández-Allica, J., Becerril, J.M., Amaral-Sobrinho, N., Mazur, N., Garbisu, C., 2006. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65(1):43-50.
[19] Shukla, S.R., Sakhardande, V.D., 1992. Column studies on metal ion removal by dyed cellulosic materials. J. Appl. Polym. Sci., 44(5):903-910.
[20] Volesky, B., Holan, Z.R., 1995. Biosorption of heavy metals. Biotechnol. Prog., 11(3):235-250.
[21] Yang, X.E., Long, X.X., Ni, W.Z., 2002. Sedum alfredii Hance—a new ecotype of Zn-hyperaccumulator plant species native to China. Chin. Sci. Bull., 47(13):1003-1006 (in Chinese).
[22] Yang, X.E., Feng, Y., He, Z.L., Stoffella, P.J., 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elements Med. Biol., 18(4):339-353.
[23] Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1):185-195.
[24] Zakir Hossain, A.K.M., Koyama, H., Hara, T., 2006. Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J. Plant Physiol., 163(1):39-47.
Open peer comments: Debate/Discuss/Question/Opinion
<1>