CLC number: TM32
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 17
Clicked: 6994
Xin-liang ZHANG, Yong-hong TAN. Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure[J]. Journal of Zhejiang University Science A, 2008, 9(1): 58-64.
@article{title="Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure",
author="Xin-liang ZHANG, Yong-hong TAN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="1",
pages="58-64",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071146"
}
%0 Journal Article
%T Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure
%A Xin-liang ZHANG
%A Yong-hong TAN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 1
%P 58-64
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071146
TY - JOUR
T1 - Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure
A1 - Xin-liang ZHANG
A1 - Yong-hong TAN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 1
SP - 58
EP - 64
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071146
Abstract: The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement between the output of the proposed model and actual measured output.
[1] Aoyagi, M., Tomikawa, Y., Takano, T., 1996. Simplified equivalent circuit of the ultrasonic motor and its applications. Ultrasonics, 34(2-5):275-278.
[2] Bigdeli, N., Haeri, M., 2004. Modeling of an Ultrasonic Motor Based on Hammerstein Model Structure. 8th Control, Automation, Robotics and Vision Conference, ICARCV-04, 2(6-9):1374-1378.
[3] Ding, F., Chen, T., 2005. Identification of Hammerstein nonlinear ARMAX systems. Automatica, 41(9):1479-1489.
[4] Frangi, A., Corigliano, A., Binci, M., Faure, P., 2005. Finite element modeling of a rotating piezoelectric ultrasonic motor. Ultrasonics, 43(9):747-755.
[5] Hagood IV, N.W., McFarland, A.J., 1995. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42(2):210-224.
[6] Jeong, S.H., Lee, H.K., Kim, Y.J., Kim, H.H., Lim, K.J., 1997. Vibration Analysis of the Stator in Ultrasonic Motor by FEM. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, ICPADM-97. Korea, p.1091-1094.
[7] Jin, L., Zhu, M., Zhao, C., 1998. Position and speed controlling for traveling wave ultrasonic motors. Journal of Experimental Mechanics, 13(2):263-266 (in Chinese).
[8] Kagawa, Y., Tsuchiya, T., Kataoka, T., Yamabuchi, T., Furukawa, T., 1996. Finite element simulation of dynamic responses of piezoelectric actuators. Journal of Sound and Vibration, 191(4):519-538.
[9] Sashida, T., 1993. An Introduction to Ultrasonic Motors. Oxford Science Publication, Oxford.
[10] Schmidt, J.P., Hagedorn, P., Miao, B.Q., 1996. A note on the contact problem in an ultrasonic travelling wave motor. Int. J. Non-Linear Mechanics, 31(6):915-924.
[11] Senjyu, T., Kashiwagi, T., Uezato, K., 2001. Position control of ultrasonic motors using MRAC with dead-zone compensation. IEEE Transactions on Industrial Electronics, 48(6):1278-1285.
[12] Senjyu, T., Nakamura, M., Urasaki, N., Sekine, H., Funabashi, T., 2006. Mathematical Model of Ultrasonic Motors for Speed Control. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, APEC 06, p.290-295.
[13] Tomikawa, Y., Yaginuma, M., Hirose, S., Takano, T., 1991. An equivalent circuit expression of an ultrasonic motor and measurement of its elements. Jpn. J. Appl. Phys., 30(Part 1, 9B):2398-2401.
[14] Ueha, S., Tomikawa, Y., 1993. Ultrasonic Motors: Theory and Applications. Clarendon Press, Oxford.
[15] Voros, J., 1997. Parameter identification of discontinuous Hammerstein systems. Automatica, 33(6):1141-1146.
[16] Voros, J., 2003. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Transactions on Automatic Control, 48(12):2203-2206.
[17] Wallaschek, J., 1998. Contact mechanics of piezoelectric ultrasonic motors. Smart Mater. Struct., 7(3):369-381.
[18] Wang, S.Y., 2004. A finite element model for the static and dynamic analysis of a piezoelectric bimorph. International Journal of Solids and Structures, 41(15):4075-4096.
[19] Yang, M., Que, P., 2001. Performances estimation of a rotary travelling-wave ultrasonic motor based on two-dimension analytical model. Ultrasonics, 39(2):115-120.
[20] Zhu, M., 2004. Contact analysis and mathematical modeling of traveling wave ultrasonic motors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(6):668-679.
Open peer comments: Debate/Discuss/Question/Opinion
<1>