CLC number: O39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6469
Miloud SOUIYAH, Abdulnaser ALSHOAIBI, A. MUCHTAR, A.K. ARIFFIN. Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy[J]. Journal of Zhejiang University Science A, 2008, 9(1): 32-37.
@article{title="Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy",
author="Miloud SOUIYAH, Abdulnaser ALSHOAIBI, A. MUCHTAR, A.K. ARIFFIN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="1",
pages="32-37",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A072176"
}
%0 Journal Article
%T Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy
%A Miloud SOUIYAH
%A Abdulnaser ALSHOAIBI
%A A. MUCHTAR
%A A.K. ARIFFIN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 1
%P 32-37
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A072176
TY - JOUR
T1 - Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy
A1 - Miloud SOUIYAH
A1 - Abdulnaser ALSHOAIBI
A1 - A. MUCHTAR
A1 - A.K. ARIFFIN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 1
SP - 32
EP - 37
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A072176
Abstract: An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.
[1] Alshoaibi, A.M., Ariffin, A.K., 2006. Finite element simulation of stress intensity factors in elastic-plastic crack growth. J. Zhejiang Univ. Sci. A, 7(8):1336-1342.
[2] Alshoaibi, A.M., Hadi, M.S.A., Ariffin, A.K., 2007. An adaptive finite element procedure for crack propagation analysis. J. Zhejiang Univ. Sci. A, 8(2):228-236.
[3] Anlas, G., Santare, M., Lambros, J., 2000. Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fracture, 104(2):131-143.
[4] Barsoum, R.S., 1976. On the use of isoparametric finite element in linear fracture mechanics. International Journal of Numerical Methods in Engineering, 10(1):25-37.
[5] Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L.A., 1996. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55(2):321-334.
[6] Bordas, S., Moran, B., 2006. Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9):1176-1201.
[7] Chang, J., Quan, X.J., Mutoh, Y., 2006. A general mixed-mode brittle fracture criterion for cracked materials. Engineering Fracture Mechanics, 73(9):1249-1263.
[8] de Araújo, T., Bittencourt, T., Roehl, D., Martha, L., 2000. Numerical Estimation of Fracture Parameters in Elastic and Elastic-plastic Analysis. European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona.
[9] de Matos, P.F.P., Moreira, P.M., Portela, A., de Castro, P.M., 2004. Dual boundary element analysis of cracked plates: post-processing implementation of the singularity subtraction technique. Computers and Structures, 82(17-19):1443-1449.
[10] de Murais, A.B., 2007. Calculation of stress intensity factors by the force method. Engineering Fracture Mechanics, 74(5):739-750.
[11] Fett, T., Gerteisen, G., Hahnenberger, S., Martin, G., Munz, D., 1995. Fracture tests for ceramics under mode-I, mode-II and mixed-mode loading. Journal of the European Ceramic Society, 15(4):307-312.
[12] Filon, L., 1903. On an approximate solution for the bending of a beam of rectangular cross-section under any system load, with special reference to points of concentrated or discontinuous loading. Philosophical Transactions of the Royal Society of London, Series A, 201(1):63-155.
[13] Freese, C.E., Tracey, D.M., 1976. The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int. J. Fracture, 12:767-770.
[14] Guinea, G.V., Planan, J., Elices, M., 2000. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics, 66(3):243-255.
[15] Löhner, R., 1997. Automatic unstructured grid generators. Finite Elements in Analysis and Design, 25(1-2):111-134.
[16] Phongthanapanich, S., Dechaumphai, P., 2004. Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40(13-14):1753-1771.
[17] Szutkowska, M., Boniecki, M., 2006. Subcritical crack growth in Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials Processing Technology, 175(1-3):416-420.
[18] Ventura, G., Xu, J.X., Belylschko, T., 2001. Level Set Crack Propagation Modelling in the Element-free Galerkin Method. Int. European Conference on Computational Mechanics.
[19] Zienkiewicz, O., Taylor, R., Zhu, J., 2005. The Finite Element Method: Its Basis and Fundamentals. Baker & Taylor Books.
Open peer comments: Debate/Discuss/Question/Opinion
<1>