CLC number: TM921
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2008-10-27
Cited: 37
Clicked: 6441
Taher NIKNAM. Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators[J]. Journal of Zhejiang University Science A, 2008, 9(12): 1753-1764.
@article{title="Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators",
author="Taher NIKNAM",
journal="Journal of Zhejiang University Science A",
volume="9",
number="12",
pages="1753-1764",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820047"
}
%0 Journal Article
%T Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators
%A Taher NIKNAM
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 12
%P 1753-1764
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820047
TY - JOUR
T1 - Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators
A1 - Taher NIKNAM
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 12
SP - 1753
EP - 1764
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820047
Abstract: We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of electrical equipments such as static var compensators, voltage regulators, and under-load tap changer transformers, which have usually nonlinear and discrete characteristics. The feasibility of the proposed approach is demonstrated by comparison with the methods based on neural networks, ant colony optimization, and genetic algorithms for two test systems, a network with 34-bus radial test feeders and a realistic 80-bus 20 kV network.
[1] Afshar, A., Bozog, H., Marino, M.A., Adams, B.J., 2007. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Inst., 344(5):452-462.
[2] Baran, M.E., Kelley, A.W., 1994. State estimation for real-time monitoring of distribution systems. IEEE Trans. on Power Syst., 9(3):1601-1609.
[3] Baran, M.E., Freeman, L.A.A., Hanson, F., Ayers, V., 2005. Load estimation for load monitoring at distribution substations. IEEE Trans. on Power Syst., 20(1):164-170.
[4] Deng, Y., He, Y., Zhang, B., 2002. A branch-estimation-based state estimation method for radial distribution systems. IEEE Trans. on Power Del., 17(4):1057-1062.
[5] Fathian, M., Amiri, B., Maroosi, A., 2007. Application of honey bee mating optimization algorithm on clustering. Appl. Math. Comput., 190(2):1502-1513.
[6] Ghosh, A.K., Lubkeman, D.L., Downey, M.J., Jones, R.H., 1997. Distribution circuit state estimation using a probabilistic approach. IEEE Trans. on Power Syst., 12(1):45-51.
[7] Gursoy, E., Niebur, D., 2006. On-line Estimation of Electric Power System Active Loads. Proc. IEEE Int. Joint Conf. on Neural Networks, BC, Canada, p.1689-1694.
[8] Haddad, O.B., Afshar, A., Marino, M.A., 2006. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Res. Manag., 20(5):661-680.
[9] Haupt, JR.L., Haupt, S.E., 1999. Practical Genetic Algorithm. John Wiely & Sons Inc.
[10] Kersting, W.H., 1991. Radial distribution test feeders. IEEE Trans. on Power Syst., 6(3):975-985.
[11] Konjic, T., Miranda, V., Kapetanovic, I., 2005. Fuzzy inference systems applied to LV substation load estimation. IEEE Trans. on Power Syst., 20(2):742-749.
[12] Leou, R.C., Lu, C.N., 1996. Improving feeder voltage calculation results with telemeter data. IEEE Trans. on Power Del., 11(4):1914-1920.
[13] Losi, A., Russo, M., 2005. Dispersed generation modeling for object-oriented distribution load flow. IEEE Trans. on Power Del., 20(2):1532-1540.
[14] Naka, S., Genji, T., Yura, T., Fukuyama, Y., 2003. A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. on Power Syst., 18(1):60-68.
[15] Niknam, T., 2005. Impact of Distributed Generators on Volt/Var Control in Distribution Networks. PhD Thesis, Electrical Engineering Department, Sharif University of Technology.
[16] Niknam, T., Ranjbar, A.M., Shirani, A.R., 2005a. A new approach for distribution state estimation based on ant colony algorithm with regard to distributed generation. J. Intell. Fuzzy Syst., 16(2):119-131.
[17] Niknam, T., Ranjbar, A.M., Shirani, A.R., 2005b. A new approach based on ant algorithm for Volt/Var control in distribution network considering distributed generation. Iran. J. Sci. Tech., Trans. B, 29(B4):1-15.
[18] Roytelman, I., Shahidehpour, S.M., 1993. State estimation for electric power distribution systems in quasi real-time conditions. IEEE Trans. Power Del., 8(4):2009-2015.
[19] Sakis Meliopoulos, A.P., Zhang, F., 1996. Multiphase power flow and state estimation for power distribution systems. IEEE Trans. on Power Syst., 11(2):939-946.
[20] Wan, J., Miu, K.N., 2002. Zonal Load Estimation Studies in Radial Power Distribution Networks. IEEE Int. Symp. on Circuits and Systems, 5:697-700.
[21] Wang, H.B., Schulz, N.N., 2004. A revised branch current-based distribution system state estimation algorithm and meter placement impact. IEEE Trans. on Power Syst., 19(1):207-213.
Open peer comments: Debate/Discuss/Question/Opinion
<1>