CLC number: TG113.25
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-08-31
Cited: 0
Clicked: 5722
Wen-chen Xu, Hao Zhang, De-bin Shan. Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region[J]. Journal of Zhejiang University Science A, 2010, 11(10): 738-743.
@article{title="Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region",
author="Wen-chen Xu, Hao Zhang, De-bin Shan",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="738-743",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000138"
}
%0 Journal Article
%T Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region
%A Wen-chen Xu
%A Hao Zhang
%A De-bin Shan
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 738-743
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000138
TY - JOUR
T1 - Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region
A1 - Wen-chen Xu
A1 - Hao Zhang
A1 - De-bin Shan
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 738
EP - 743
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000138
Abstract: hot extrusion was conducted in the α+β phase region for promoting mechanical properties of Ti42Al9V0.3Y. The microstructures and tensile properties before and after hot extrusion were studied. The results show that the microstructure of the as-cast alloy mainly consists of massive γ phase in β matrix and the as-extruded alloy mainly consists of lamellar α2/γ, lamellar β/γ, and strip γ propagating from elongated β phase. In the as-cast alloy, the predominantly observed fracture mode is transgranular cleavage failure at room temperature and intergranular fracture at 650–750 °C. After hot extrusion, it transforms into transgranular cleavage-like failure, including translamellar cleavage and delamination. The excellent tensile properties of the as-extruded material are attributed to the obvious refined microstructure with broken YAl2 particles and the micro-crack shielding action of the TiAl lamellasome.
[1]Appel, F., Wagner, R., 1998. Microstructure and deformation of two-phase γ-titanium aluminides. Material Science and Engineering: R: Reports, 22(5):258-259.
[2]Bohn, R., Klassen, T., Bormann, R., 2001. Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range. Acta Materialia, 49(2):299-311.
[3]Chan, K.S., 1993. Toughening mechanisms in titanium aluminides. Metallurgical and Materials Transactions A, 24(3):569-583.
[4]Chen, Y.Y., Kong, F.T., Tian, J., Chen, Z.Y., Xiao, S.L., 2002. Recent developments in engineering γ-TiAl intermetallics. Transactions of the Nonferrous Metals Society of China, 12(4):605-609.
[5]Chen, Y.Y., Kong, F.T., Han, J.C., Chen, Z.Y., Tian, J., 2005. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy. Intermetallics, 13(3-4):263-266.
[6]Das, G., Kestler, H., Clemens, H., Bartolotta, P.A., 2004. Sheet gamma TiAl: status and opportunities. JOM Journal of the Minerals, Metals and Materials Society, 56(11):42-45.
[7]Imayev, R.M., Imayev, V.M., Oehring, M., Appel, F., 2007. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics, 15(4):451-460.
[8]Kestler, H., Clemens, H., 2003. Titanium and Titanium Alloys. Wiley-VCH, Weinheim, Germany.
[9]Kim, Y.W., Clemens, H., Rosenberger, A.H., 2003. Gamma Titanium Aluminides. TMS, Warrendale, PA, USA.
[10]Liu, C.T., Maziasz, P.J., 1998. Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics, 6(7-8):653-661.
[11]Park, H.S., Nam, S.W., Kim, N.J., 1999. Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon. Scripta Materialia, 41(11):1197-1203.
[12]Senkov, O.N., Srisukhumbowornchai, N., Ovecoglu, M.L., Froes, F.H., 1998. Microstructure evolution of a nanocrystalline Ti-47Al-3Cr alloy on annealing at 1200 °C. Scripta Materialia, 39(6):691-698.
[13]Tetsui, T., Shindo, K., Kaji, S., Kobayashi, S., Takeyama, M., 2003. Strengthening a high-strength TiAl alloy by hot-forging. Intermetallics, 11(4):299-306.
[14]Tetsui, T., Shindo, K., Kaji, S., Kobayashi, S., Takeyama, M., 2005. Fabrication of TiAl components by means of hot forging and machining. Intermetallics, 13(9):971-978.
[15]Xu, X.J., Lin, J.P., Wang, Y.L., Gao, J.F., Lin, Z., Chen, G.L., 2006. Effect of forging on microstructure and tensile properties of Ti-45Al-(8–9)Nb-(W,B,Y) alloy. Journal of Alloys and Compounds, 414(1-2):175-180.
Open peer comments: Debate/Discuss/Question/Opinion
<1>