Full Text:   <2922>

CLC number: TG113.25

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2010-08-31

Cited: 0

Clicked: 5722

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.10 P.738-743

http://doi.org/10.1631/jzus.A1000138


Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region


Author(s):  Wen-chen Xu, Hao Zhang, De-bin Shan

Affiliation(s):  Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Corresponding email(s):   shandb@hit.edu.cn

Key Words:  TiAl alloy, Microstructure, Mechanical property, Hot extrusion


Wen-chen Xu, Hao Zhang, De-bin Shan. Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region[J]. Journal of Zhejiang University Science A, 2010, 11(10): 738-743.

@article{title="Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region",
author="Wen-chen Xu, Hao Zhang, De-bin Shan",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="738-743",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000138"
}

%0 Journal Article
%T Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region
%A Wen-chen Xu
%A Hao Zhang
%A De-bin Shan
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 738-743
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000138

TY - JOUR
T1 - Promoting the mechanical properties of Ti42Al9V0.3Y alloy by hot extrusion in the α+β phase region
A1 - Wen-chen Xu
A1 - Hao Zhang
A1 - De-bin Shan
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 738
EP - 743
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000138


Abstract: 
hot extrusion was conducted in the α+β phase region for promoting mechanical properties of Ti42Al9V0.3Y. The microstructures and tensile properties before and after hot extrusion were studied. The results show that the microstructure of the as-cast alloy mainly consists of massive γ phase in β matrix and the as-extruded alloy mainly consists of lamellar α2/γ, lamellar β/γ, and strip γ propagating from elongated β phase. In the as-cast alloy, the predominantly observed fracture mode is transgranular cleavage failure at room temperature and intergranular fracture at 650–750 °C. After hot extrusion, it transforms into transgranular cleavage-like failure, including translamellar cleavage and delamination. The excellent tensile properties of the as-extruded material are attributed to the obvious refined microstructure with broken YAl2 particles and the micro-crack shielding action of the TiAl lamellasome.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Appel, F., Wagner, R., 1998. Microstructure and deformation of two-phase γ-titanium aluminides. Material Science and Engineering: R: Reports, 22(5):258-259.

[2]Bohn, R., Klassen, T., Bormann, R., 2001. Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range. Acta Materialia, 49(2):299-311.

[3]Chan, K.S., 1993. Toughening mechanisms in titanium aluminides. Metallurgical and Materials Transactions A, 24(3):569-583.

[4]Chen, Y.Y., Kong, F.T., Tian, J., Chen, Z.Y., Xiao, S.L., 2002. Recent developments in engineering γ-TiAl intermetallics. Transactions of the Nonferrous Metals Society of China, 12(4):605-609.

[5]Chen, Y.Y., Kong, F.T., Han, J.C., Chen, Z.Y., Tian, J., 2005. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy. Intermetallics, 13(3-4):263-266.

[6]Das, G., Kestler, H., Clemens, H., Bartolotta, P.A., 2004. Sheet gamma TiAl: status and opportunities. JOM Journal of the Minerals, Metals and Materials Society, 56(11):42-45.

[7]Imayev, R.M., Imayev, V.M., Oehring, M., Appel, F., 2007. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics, 15(4):451-460.

[8]Kestler, H., Clemens, H., 2003. Titanium and Titanium Alloys. Wiley-VCH, Weinheim, Germany.

[9]Kim, Y.W., Clemens, H., Rosenberger, A.H., 2003. Gamma Titanium Aluminides. TMS, Warrendale, PA, USA.

[10]Liu, C.T., Maziasz, P.J., 1998. Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics, 6(7-8):653-661.

[11]Park, H.S., Nam, S.W., Kim, N.J., 1999. Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon. Scripta Materialia, 41(11):1197-1203.

[12]Senkov, O.N., Srisukhumbowornchai, N., Ovecoglu, M.L., Froes, F.H., 1998. Microstructure evolution of a nanocrystalline Ti-47Al-3Cr alloy on annealing at 1200 °C. Scripta Materialia, 39(6):691-698.

[13]Tetsui, T., Shindo, K., Kaji, S., Kobayashi, S., Takeyama, M., 2003. Strengthening a high-strength TiAl alloy by hot-forging. Intermetallics, 11(4):299-306.

[14]Tetsui, T., Shindo, K., Kaji, S., Kobayashi, S., Takeyama, M., 2005. Fabrication of TiAl components by means of hot forging and machining. Intermetallics, 13(9):971-978.

[15]Xu, X.J., Lin, J.P., Wang, Y.L., Gao, J.F., Lin, Z., Chen, G.L., 2006. Effect of forging on microstructure and tensile properties of Ti-45Al-(8–9)Nb-(W,B,Y) alloy. Journal of Alloys and Compounds, 414(1-2):175-180.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE