CLC number: TB51+1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-01-25
Cited: 2
Clicked: 5926
Ke Tang, Tian Lei, Xiao-gang Lin, Tao Jin, Yu Zhang. Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation[J]. Journal of Zhejiang University Science A, 2011, 12(3): 232-237.
@article{title="Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation",
author="Ke Tang, Tian Lei, Xiao-gang Lin, Tao Jin, Yu Zhang",
journal="Journal of Zhejiang University Science A",
volume="12",
number="3",
pages="232-237",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000191"
}
%0 Journal Article
%T Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation
%A Ke Tang
%A Tian Lei
%A Xiao-gang Lin
%A Tao Jin
%A Yu Zhang
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 3
%P 232-237
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000191
TY - JOUR
T1 - Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation
A1 - Ke Tang
A1 - Tian Lei
A1 - Xiao-gang Lin
A1 - Tao Jin
A1 - Yu Zhang
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 3
SP - 232
EP - 237
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000191
Abstract: gas-liquid coupling oscillation is a novel approach to reducing the resonant frequency and to elevating the pressure amplitude of a thermoacoustic engine. If a thermoacoustic engine is used to drive low-frequency pulse tube refrigerators, the frequency matching between the thermoacoustic engine and the refrigerator plays an important role. Based on an acoustic-electric analogy, a lumped parameter model is proposed to estimate the resonant frequency of a standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Furthermore, a simplified lumped parameter model is also developed to reduce the computation complexity. The resonant frequency dependence on the mean pressure, the gas space volume, and the water column length is computed and analyzed. The impact of different working gases on the resonant frequency is also discussed. The effectiveness of the models is validated by comparing the computed results with the experimental data of the gas-liquid coupling oscillation system. An increase in the mean working pressure can lead to a rise in the resonant frequency, and a lower resonant frequency can be achieved by elongating the liquid column. In comparison with nitrogen and argon, carbon dioxide can realize a lower frequency due to a smaller specific heat ratio.
[1]Backhaus, S., Tward, E., Petach, M., 2004. Travelling-wave thermoacoustic electric generator. Applied Physics Letters, 85(6):1085-1087.
[2]Castrejón-Pita, A.A., Huelsz, G., 2007. Heat-to-electricity thermoacoustic-magnetohydrodynamic conversion. Applied Physics Letters, 90(17):174110.
[3]Chen, G.B., Jiang, J.P., Shi, J.L., Jin, T., Tang, K., Jiang, Y.L., Jiang, N., Huang, Y.H., 2002. Influence of buffer on resonance frequency of thermoacoustic engine. Cryogenics, 42(3-4):223-227.
[4]Chen, G.B., Tang, K., Jin, T., 2004. Advances in thermoacoustic engine and its application to pulse tube refrigeration. Chinese Science Bulletin, 49(13):1319-1328.
[5]Dai, W., Luo, E.C., Hu, J.Y., Chen, Y.Y., 2005. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: acoustic amplifier. Chinese Science Bulletin, 50(18):2112-2114.
[6]Dai, W., Luo, E.C., Yu, G.Y., 2006. A simple method to determine the frequency of engine-included thermoacoustic systems. Cryogenics, 46(11):804-808.
[7]Hu, J.Y., Luo, E.C., Dai, W., Zhou, Y., 2007. A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature. Chinese Science Bulletin, 52(4):574-576.
[8]Sugita, H., Matsubara, Y., Kushino, A., Ohnishi, T., Kobayashi, H., Dai, W., 2004. Experimental study on thermally actuated pressure wave generator for space cryocooler. Cryogenics, 44(6-8):431-437.
[9]Swift, G.W., 2002. Thermoacoustics: a Unifying Perspective for some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley, PA, p.98-113.
[10]Tang, K., Chen, G.B., Jin, T., Bao, R., Kong, B., Qiu, L.M., 2005. Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 45(3):185-191.
[11]Tang, K., Bao, R., Chen, G.B., Qiu, Y., Shou, L., Huang, Z.J., Jin, T., 2007. Thermoacoustically driven pulse tube cooler below 60 K. Cryogenics, 47(9-10):526-529.
[12]Tang, K., Huang, Z.J., Jin, T., Chen, G.B., 2008. Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier. Journal of Zhejiang University-SCIENCE A, 9(1):79-87.
[13]Tang, K., Lei, T., Jin, T., Lin, X.G., Xu, Z.Z., 2009. A standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Applied Physics Letters, 94(25):254101.
[14]Tu, Q., Li, Q., Wu, F., Guo, F.Z., 2003. Network model approach for calculating oscillating frequency of thermoacoustic prime mover. Cryogenics, 43(6):351-357.
[15]West, C.D., 1983. Liquid Piston Stirling Engines. Van Nostrand Reinhold Company, New York, USA, p.1-9.
[16]Yu, G.Y., Luo, E.C., Dai, W., Wu, Z.H., 2007. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio of 1.40. Cryogenics, 47(2):132-134.
Open peer comments: Debate/Discuss/Question/Opinion
<1>