CLC number: TU31
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-08-30
Cited: 10
Clicked: 6388
Gintaris Kaklauskas, Viktor Gribniak, Rokas Girdzius. Average stress-average strain tension-stiffening relationships based on provisions of design codes[J]. Journal of Zhejiang University Science A, 2011, 12(10): 731-736.
@article{title="Average stress-average strain tension-stiffening relationships based on provisions of design codes",
author="Gintaris Kaklauskas, Viktor Gribniak, Rokas Girdzius",
journal="Journal of Zhejiang University Science A",
volume="12",
number="10",
pages="731-736",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100029"
}
%0 Journal Article
%T Average stress-average strain tension-stiffening relationships based on provisions of design codes
%A Gintaris Kaklauskas
%A Viktor Gribniak
%A Rokas Girdzius
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 10
%P 731-736
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100029
TY - JOUR
T1 - Average stress-average strain tension-stiffening relationships based on provisions of design codes
A1 - Gintaris Kaklauskas
A1 - Viktor Gribniak
A1 - Rokas Girdzius
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 10
SP - 731
EP - 736
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100029
Abstract: This research was aimed at deriving average stress-average strain tension-stiffening relationships in accordance with the provisions of design codes for reinforced concrete (RC) members. Using a proposed inverse technique, the tension-stiffening relationships were derived from moment-curvature diagrams of RC beams calculated by different code methods, namely Eurocode 2, ACI 318, and the Chinese standard GB 50010-2002. The derived tension-stiffening laws were applied in a numerical study using the nonlinear finite element software ATENA. The curvatures calculated by ATENA and the code methods were in good agreement.
[1]ACI Committee 318, 2008. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute, Farmington Hills, Michigan.
[2]Bacinskas, D., Kaklauskas, G., Gribniak, V., Sung, W.P., Shih, M.H., 2011. Layer model for long-term deflection analysis of cracked reinforced concrete bending members. Mechanics of Time-Dependent Materials, in press.
[3]Borosnyói, A., Balázs, G.L., 2005. Models for flexural cracking in concrete: the state of the art. Structural Concrete, 6(2):53-62.
[4]CEN (Comité Européen de Normalisation), 2004. Eurocode 2: Design of Concrete Structures–Part 1: General Rules and Rules for Buildings (EN 1992-1-1:2004). CEN, Brussels.
[5]Collins, M.P., Mitchell, D., 1991. Prestressed Concrete Structures. Prentice-Hall Inc., New York.
[6]Dede, T., Ayvaz, Y., 2009. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect. Materials and Design, 30(9):3846-3851.
[7]Fields, K., Bischoff, P.H., 2004. Tension stiffening and cracking of high-strength reinforced concrete tension members. ACI Structural Journal, 101(4):447-456.
[8]Gribniak, V., 2009. Shrinkage Influence on Tension-Stiffening of Concrete Structures. PhD Thesis, Vilnius Gediminas Technical University, Vilnius. Available from http://www. dart-europe.eu/full.php?id=182160
[9]Gribniak, V., Kaklauskas, G., Indurm, S., Bacinskas, D., 2010a. Finite element mesh size effect on deformation predictions of reinforced concrete bridge girder. The Baltic Journal of Road and Bridge Engineering, 5(1):19-27.
[10]Gribniak, V., Kaklauskas, G., Cygas, D., Bacinskas, D., Kupliauskas, R., Sokolov, A., 2010b. Investigation of concrete cracking effect in deck slab of continuous bridges. The Baltic Journal of Road and Bridge Engineering, 5(2):83-88.
[11]Hsu, T.C.T., 1993. Unified Theory of Reinforced Concrete. CRC Press Inc., Boca Raton, Florida.
[12]Juozapaitis, A., Idnurm, S., Kaklauskas, G., Idnurm, J., Gribniak, V., 2010. Non-linear analysis of suspension bridges with flexible and rigid cables. Journal of Civil Engineering and Management, 16(1):149-154.
[13]Kaklauskas, G., 2004. Flexural layered deformational model of reinforced concrete members. Magazine of Concrete Research, 56(10):575-584.
[14]Kaklauskas, G., Ghaboussi, J., 2001. Stress-strain relations for cracked tensile concrete from RC beam tests. Journal of Structural Engineering ASCE, 127(1):64-73.
[15]Kaklauskas, G., Gribniak, V., 2011. Eliminating shrinkage effect from moment-curvature and tension-stiffening relationships of reinforced concrete members. Journal of Structural Engineering, in press.
[16]Kaklauskas, G., Gribniak, V., Bacinskas, D., Vainiunas, P., 2009. Shrinkage influence on tension stiffening in concrete members. Engineering Structures, 31(6):1305-1312.
[17]MCPRC (Ministry of Construction of the People’s Republic of China), 2004. Code for Design of Concrete Structures, GB 50010-2002. Architecture & Building Press, Beijing, China.
[18]Ng, P.L., Lam, J.Y.K., Kwan, A.K.H., 2010. Tension stiffening in concrete beams. Part 1: FE analysis. Proceedings of the ICE-Structures and Buildings, 163(1):19-28.
[19]Stramandinoli, R.S.B., Rovere, H.L.L., 2008. An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members. Engineering Structures, 30(7):2069-2080.
[20]Torres, L., Lopez-Almansa, F., Bozzo, L.M., 2004. Tension-stiffening model for cracked flexural concrete members. Journal of Structural Engineering, 130(8):1242-1251.
[21]Vecchio, F.J., Collins, M.P., 1986. The modified compression field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(6):925-933.
[22]Wang, J.Y., Sakashita, M., Kono, S., Tanaka, H., Lou, W.J., 2010. Behavior of reinforced concrete structural walls with various opening locations: experiments and macro model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(3):202-211.
[23]Wu, H.Q., Gilbert, R.I., 2009. Modeling short-term tension stiffening in reinforced concrete prisms using a continuum-based finite element model. Engineering Structures, 31(10):2380-2391.
Open peer comments: Debate/Discuss/Question/Opinion
<1>