CLC number: TU2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6079
Syed Muhammad Ibrahim, Erasmo Carrera, Marco Petrolo, Enrico Zappino. Buckling of thin-walled beams by a refined theory[J]. Journal of Zhejiang University Science A, 2012, 13(10): 747-759.
@article{title="Buckling of thin-walled beams by a refined theory",
author="Syed Muhammad Ibrahim, Erasmo Carrera, Marco Petrolo, Enrico Zappino",
journal="Journal of Zhejiang University Science A",
volume="13",
number="10",
pages="747-759",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100331"
}
%0 Journal Article
%T Buckling of thin-walled beams by a refined theory
%A Syed Muhammad Ibrahim
%A Erasmo Carrera
%A Marco Petrolo
%A Enrico Zappino
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 10
%P 747-759
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100331
TY - JOUR
T1 - Buckling of thin-walled beams by a refined theory
A1 - Syed Muhammad Ibrahim
A1 - Erasmo Carrera
A1 - Marco Petrolo
A1 - Enrico Zappino
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 10
SP - 747
EP - 759
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100331
Abstract: The buckling of thin-walled structures is presented using the 1D finite element based refined beam theory formulation that permits us to obtain N-order expansions for the three displacement fields over the section domain. These higher-order models are obtained in the framework of the carrera unified formulation (CUF). CUF is a hierarchical formulation in which the refined models are obtained with no need for ad hoc formulations. Beam theories are obtained on the basis of Taylor-type and Lagrange polynomial expansions. Assessments of these theories have been carried out by their applications to studies related to the buckling of various beam structures, like the beams with square cross section, I-section, thin rectangular cross section, and annular beams. The results obtained match very well with those from commercial finite element software with a significantly less computational cost. Further, various types of modes like the bending modes, axial modes, torsional modes, and circumferential shell-type modes are observed.
[1]Andrade, A., Camotim, D., 2004. Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections. Steel and Composite Structures, 4(4):281-300.
[2]Andrade, A., Camotim, D., Dinis, P.B., 2007. Lateraltorsional
[3]buckling of singly symmetric web-tapered thinwalled I-beams: 1D model vs. shell FEA. Computers & Structures, 85(17-18):1343-1359.
[4]Ascione, L., Giordano, A., Spadea, S., 2011. Lateral buckling of pultruded FRP beams. Composites Part B Engineering, 42(4):819-824.
[5]Bathe, K.J., 1996. Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ.
[6]Bebiano, R., Silvestre, N., Camotim, D., 2008. Local and global vibration of thin-walled members subjected to compression and non-uniform bending. Journal of Sound and Vibration, 315(3):509-535.
[7]Berdichevsky, V., Armanios, E., Badir, A., 1992. Theory of anisotropic thin-walled closed-cross-section beams. Composites Engineering, 2(5-7):411-432.
[8]Carrera, E., 1995. A class of two dimensional theories for multilayered plates analysis. Atti Accademia delle Scienze di Torino, Memorie Scienze Fisiche, 19-20:49-87.
[9]Carrera, E., 2000. Single- vs. multilayer plate modellings on the basis of Reissner’s mixed theorem. AIAA Journal, 38(2):342-352.
[10]Carrera, E., 2003. Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10(3):215-296.
[11]Carrera, E., Demasi, L., 2002. Classical and advanced multilayered plate elements based upon PVD and RMVT: Part 1—Derivation of finite element matrices. International Journal for Numerical Methods in Engineering, 55(2):191-231.
[12]Carrera, E., Giunta, G., 2009. Hierarchical evaluation of failure parameters in composite plates. AIAA Journal, 47(3):692-702.
[13]Carrera, E., Giunta, G., 2010. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2(1):117-143.
[14]Carrera, E., Petrolo, M., 2011. On the effectiveness of higherorder terms in refined beam theories. Journal of Applied Mechanics, 78(2):021013.
[15]Carrera, E., Petrolo, M., 2012a. An advanced onedimensional formulation for laminated structure analysis. AIAA Journal, 50(1):176-189.
[16]Carrera, E., Petrolo, M., 2012b. Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47(3):537-556.
[17]Carrera, E., Giunta, G., Nali, P., Petrolo, M, 2010. Refined beam elements with arbitrary cross-section geometries. Computers & Structures, 88(5-6):283-293.
[18]Carrera, E., Giunta, G., Petrolo, M., 2011a. Beam Structures: Classical and Advanced Theories, 1st Ed. Wiley, West Sussex, UK.
[19]Carrera, E., Petrolo, M., Nali, P., 2011b. Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock and Vibration, 18(3):485-502.
[20]Carrera, E., Petrolo, M., Zappino, E., 2012. Performance of CUF approach to analyze the structural behavior of slender bodies. Journal of Structural Engineering, 138(2):285-298.
[21]Cowper, G.R., 1966. The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics, 33(2):335-340.
[22]De Lorenzis, L., La Tegola, A., 2005. Effect of the actual distribution of applied stresses on global buckling of isotropic and transversely isotropic thin-walled members: theoretical analysis. Composite Structures, 68(3):339-348.
[23]Demasi, L., 2009. ∞6 mixed plate theories based on the generalized unified formulation. Part I: governing equations. Composite Structures, 87(1):1-11.
[24]Dong, S.B., Kosmatka, J.B., Lin, H.C., 2001. On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder—Part I: methodology for Saint-Venant solutions. Journal of Applied Mechanics, 68(3):376-381.
[25]Dong, S.B., Alpdongan, C., Taciroglu, E., 2010. Much ado about shear correction factors in Timoshenko beam theory. International Journal of Solids and Structures, 47(13):1651-1665.
[26]D’Ottavio, M., Carrera, E., 2010. Variable-kinematics approach for linearized buckling analysis of laminated plates and shells. AIAA Journal, 48(9):1987-1996.
[27]El Fatmi, R., 2002. On the structural behavior and the Saint Venant solution in the exact beam theory. Application to laminated composite beams. Computers & Structures, 80(16-17):1441-1456.
[28]El Fatmi, R., 2007a. Non-uniform warping including the effects of torsion and shear forces. Part I: a general beam theory. International Journal of Solids and Structures, 44(18-19):5912-5929.
[29]El Fatmi, R., 2007b. Non-uniform warping including the effects of torsion and shear forces. Part II: analytical and numerical applications. International Journal of Solids and Structures, 44(18-19):5930-5952.
[30]Firouz-Abadi, R.D., Haddadpour, H., Novinzadehb, A.B., 2007. An asymptotic solution to transverse free vibrations of variable-section beams. Journal of Sound and Vibration, 304(3-5):530-540.
[31]Gruttmann, F., Wagner, W., 2001. Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Computational Mechanics, 27(3):199-207.
[32]Gruttmann, F., Sauer, R., Wagner, W., 1999. Shear stresses in prismatic beams with arbitrary cross-sections. International Journal for Numerical Methods in Engineering, 45(7):865-889.
[33]Hutchinson, J.R., 2001. Shear coefficients for Timoshenko beam theory. Journal of Applied Mechanics, 68(1):87-92.
[34]Ibrahim, S.M., Carrera, E., Petrolo, M., Zappino, E., 2012. Buckling of composite thin walled beams using refined theory. Composite Structures, 94(2):563-570.
[35]Ieşan, 1986. On Saint-Venant’s problem. Archive for Rational Mechanics and Analysis, 91(4):363-373.
[36]Jensen, J.J., 1983. On the shear coefficient in Timoshenko’s beam theory. Journal of Sound and Vibration, 87(4):621-635.
[37]Kaneko, T., 1975. On Timoshenko’s correction for shear in vibrating beams. Journal of Physics D: Applied Physics, 8(16):1927-1936.
[38]Kim, C., White, S.R., 1997. Thick-walled composite beam theory including 3-D elastic effects and torsional warping. International Journal of Solids and Structures, 34(31-32):4237-4259.
[39]Kim, J.S., Wang, K.W., 2010. Vibration analysis of composite beams with end effects via the formal asymptotic method. Journal of Vibration and Acoustics, 132(4):041003.
[40]Kosmatka, J.B., Lin, H.C., Dong, S.B., 2001. On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinde—part II: cross-sectional properties. Journal of Applied Mechanics, 68(3):382-391.
[41]Ladeveze, O., Simmonds, J., 1996. New concepts for linear beam theory with arbitrary geometry and loading. Proceedings of the Academy of Sciences. Series II, Mechanics, Physics, Chemistry, Astronomy, 332(6):445-462 (in French).
[42]Ladeveze, O., Simmonds, J., 1998. New concepts for linear beam theory with arbitrary geometry and loading. European Journal of Mechanics-A/Solids, 17(3):377-402.
[43]Ladeveze, P., Sanchez, P., Simmonds, J., 2004. Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary closed cross section. International Journal of Solids and Structures, 41(7):1925-1944.
[44]Lin, H.C., Dong, S.B., 2006. On the Almansi-Michell problems for an inhomogeneous, anisotropic cylinder. Journal of Mechanics, 22(1):51-57.
[45]Matsunaga, H., 1996. Buckling instabilities of thick elastic beams subjected to axial stresses. Computers & Structures, 59(5):859-868.
[46]Nali, P., Carrera, E., Lecca, S., 2011. Assessments of refined theories for buckling analysis of laminated plates. Composite Structures, 93(2):456-464.
[47]Novozhilov, V.V., 1961. Theory of Elasticity. Pergamon Press, Oxford. Popescu, B., Hodges, D.H., 2000. On asymptotically correct Timoshenko-like anisotropic beam theory. International Journal of Solids and Structures, 37(3):535-558.
[48]Rand, O., 1994. Free vibration of thin-walled composite blades. Composite Structures, 28(2):169-180.
[49]Roberts, T.M., Al Ubaidi, H., 2001. Influence of shear deformation on restrained torsional warping of pultruded FRP bars of open cross-section. Thin-Walled Structures, 39(5):395-414.
[50]Roberts, T.M., Al Ubaidi, H., 2002. Flexural and torsional properties of pultruded fiber reinforced plastic I-profiles. Journal of Composites for Construction, 6(1):28-34.
[51]Saade, K., Espion, B., Warzee, G., 2004. Non-uniform torsional behavior and stability of thin-walled elastic beams with arbitrary cross-sections. Thin-Walled Structures, 42(6):857-881.
[52]Samanta, A., Kumar, A., 2006. Distortional buckling in monosymmetric I-beams. Thin-Walled Structures, 44(1):51-56.
[53]Schardt, R., 1966. Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau, 35:161-171 (in German).
[54]Schardt, R., 1994. Generalized beam theory—an adequate method for coupled stability problems. Thin-Walled Structures, 19(2-4):161-180.
[55]Schardt, R., Heinz, D., 1991. Structural Dynamics, Chapter Vibrations of Thin-Walled Prismatic Structures under
[56]Simultaneous Static Load Using Generalized Beam Theory. Balkema, Rotterdam, p.921-927.
[57]Silvestre, N., 2002. Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9):791-820.
[58]Silvestre, N., 2007. Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes. Thin-Walled Structures, 45(2):185-198.
[59]Silvestre, N., Camotim, D., 2002. First-order generalized beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9):791-820.
[60]Sokolnikoff, I.S., 1956. Mathematical Theory of Elasticity. McGraw-Hill.
[61]Stephen, N.G., 1980. Timoshenko’s shear coefficient from a beam subjected to gravity loading. Journal of Applied Mechanics, 47(1):121-127.
[62]Timoshenko, S.P., Woinowski-Krieger, S., 1970. Theory of Plate and Shells. McGraw-Hill.
[63]Tsai, S.W., 1988. Composites Design, 4th Ed. Think Composites, Dayton.
[64]Turvey, G.J., 1996. Lateral buckling test on rectangular cross-section of pultruded GRP cantilever beams. Composites Part B Engineering, 27(1):35-42.
[65]Volovoi, V.V., Hodges, D.H., Berdichevsky, V.L., Sutyrin, V.G., 1999. Asymptotic theory for static behavior of elastic anisotropic I-beams. International Journal of Solid Structures, 36(7):1017-1043.
[66]Wagner, W., Gruttmann, F., 2002. A displacement method for the analysis of flexural shear stresses in thin walled isotropic composite beams. Computers & Structures, 80(24):1843-1851.
[67]Yu, W., Hodges, D.H., 2004. Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. Journal of Applied Mechanics, 71(1):15-23.
[68]Yu, W., Hodges, D.H., 2005. Generalized Timoshenko theory of the variational asymptotic beam sectional analysis. Journal of the American Helicopter Society, 50(1):46-55.
[69]Yu, W., Volovoi, V.V., Hodges, D.H., Hong, X., 2002. Validation of the variational asymptotic beam sectional analysis (VABS). AIAA Journal, 40(10):2105-2113.
Open peer comments: Debate/Discuss/Question/Opinion
<1>