References
[1] Arasu, A.V., Mujumdar, A.S., 2012. Numerical study on melting of paraffin wax with Al
2O
3 in a square enclosure.
International Communications in Heat and Mass Transfer, 39(1):8-16.
[2] Brent, A.D., Voller, V.R., Reid, K.J., 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal.
Numerical Heat Transfer, 13(3):297-318.
[3] Cabeza, L.F., Casteii, A., Barreneche, C., de Gracia, A., Fernndez, A.I., 2011. Materials used as PCM in thermal energy storage in buildings: A review.
Renewable and Sustainable Energy Reviews, 15(3):1675-1695.
[4] Choi, U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. Developments and Application of Non-Newtonian Flows. ASME,New York, USA :99-105.
[5] Corcione, M., 2010. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls.
International Journal of Thermal Sciences, 49(9):1536-1546.
[6] Darzi, A.R., Farhadi, M., Sedighi, K., 2012. Numerical study of melting inside concentric and eccentric horizontal annulus.
Applied Mathematical Modelling, 36(9):4080-4086.
[7] Dutta, R., Atta, A., Dutta, T.K., 2008. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material.
The Canadian Journal of Chemical Engineering, 86(4):700-710.
[8] Fang, X., Zhang, Z., Chen, Z., 2008. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials.
Energy Conversion and Management, 49(4):718-723.
[9] Faraji, M., El Qarnia, H., 2010. Numerical study of melting in an enclosure with discrete protruding heat sources.
Applied Mathematical Modelling, 34(5):1258-1275.
[10] Gau, C., Viskanta, R., 1986. Melting and solidification of a pure metal on a vertical wall.
Journal of Heat Transfer, 108(1):174-181.
[11] Gong, Z.X., Mujumdar, A.S., 1996. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials.
International Journal of Heat and Mass Transfer, 39(4):725-733.
[12] Ho, C.J., Chen, M.W., Li, Z.W., 2008. Numerical simulation of natural convection of nanofluid a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity.
International Journal of Heat and Mass Transfer, 51(17-18):4506-4516.
[13] Ho, C.J., Gao, J.Y., 2009. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material.
International Communications in Heat and Mass Transfer, 36(5):467-470.
[14] Ho, C.J., Liu, W.K., Chang, Y.S., Lin, C.C., 2010. Numerical natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study.
International Journal of Thermal Sciences, 49(8):1345-1353.
[15] Hosseinizadeh, S.F., Rabienataj Darzi, A.A., Tan, F.L., 2012. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container.
International Journal of Thermal Sciences, 51:77-83.
[16] Kashani, S., Ranjbar, A.A., Abdollahzadeh, M., Sebti, S.S., 2012. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity.
Heat and Mass Transfer, 48(7):1155-1166.
[17] Khillarkar, D.B., Gong, Z.X., Mujumdar, A.S., 2000. Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section.
Applied Thermal Engineering, 20(10):893-912.
[18] Khodadadi, J.M., Hosseinizadeh, S.F., 2007. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage.
International Communications in Heat and Mass Transfer, 34(5):534-543.
[19] Ng, K.W., Gong, Z.X., Mujumdar, A.S., 1998. Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus.
International Communications in Heat and Mass Transfer, 25(5):631-640.
[20] Ranjbar, A.A., Kashani, S., Hosseinizadeh, S.F., Ghanbarpour, M., 2011. Numerical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material.
Thermal Science, 15(1):169-181.
[21] Sari, A., Karaipekli, A., 2009. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage.
Solar Energy Materials and Solar Cells, 93(5):571-576.
[22] Sebti, S.S., Khalilarya, S.H., Mirzaee, I., Hosseinizadeh, S.F., Kashani, S., Abdollahzadeh, M., 2011. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM).
World Applied Sciences Journal, 13(1):09-15.
[23] Sharifi, N., Bergman, T.L., Faghri, A., 2011. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces.
International Journal of Heat and Mass Transfer, 54(19-20):4182-4192.
[24] Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications.
Renewable and Sustainable Energy Reviews, 13(2):318-345.
[25] Shatikian, V., Ziskind, G., Letan, R., 2005. Numerical investigation of a PCM-based heat sink with internal fins.
International Journal of Heat and Mass Transfer, 48(17):3689-3706.
[26] Tan, F.L., Hosseinizadeh, S.F., Khodadadi, J.M., Fan, L., 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule.
International Journal of Heat and Mass Transfer, 52(15-16):3464-3472.
[27] Tay, N.H.S., Bruno, F., Belusko, M., 2012. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system.
International Journal of Heat and Mass Transfer, 55(4):574-585.
[28] Voller, V.R., Prakash, C., 1987. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase-change problems.
International Journal of Heat and Mass Transfer, 30(8):1709-1719.
[29] Wang, N., Zhang, X.R., Zhu, D.S., Gao, J.W., 2012. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites.
Journal of Thermal Analysis and Calorimetry, 107(3):949-954.
[30] Zalba, B., Marn, J.M., Cabeza, L.F., Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.
Applied Thermal Engineering, 23(3):251-283.
Open peer comments: Debate/Discuss/Question/Opinion
<1>