References
[1] Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., Vangronsveld, J., 2005. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ.
Environmental Pollution, 138(1):34-45.
[2] Cao, X., Ma, L.Q., Rhue, D.R., Appel, C.S., 2004. Mechanisms of lead, copper, and zinc retention by phosphate rock.
Environmental Pollution, 131(3):435-444.
[3] Cao, X., Wahbi, A., Ma, L., Li, B., Yang, Y., 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
Journal of Hazardous Materials, 164(2-3):555-564.
[4] Da Rocha, N.C.C., Decampos, R.C., Rossi, A.M., Moreira, E.L., Barbosa, A.F., Moure, G.T., 2002. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment.
Environmental Science & Technology, 36(7):1630-1635.
[5] Eighmy, T.T., Crannell, B.S., Butler, L.G., Cartledge, F.K., Emery, E.F., Oblas, D., Krzanowski, J.E., Eudsen, J.D., Shaw, E.L., Francus, C.A., 1997. Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate.
Environmental Science and Technology, 31(11):3330-3338.
[6] Jeanjean, J., Vincent, U., Fedoroff, M., 1994. Structural modification of calcium hydroxyapatite induced by sorption of cadmium ions.
Journal of Solid State Chemistry, 108(1):68-72.
[7] Karvelas, M., Katsoyiannis, A., Samara, C., 2003. Occurrence and fate of heavy metals in the waste water treatment process.
Chemosphere, 53(10):1201-1210.
[8] Lindsay, W.L., 1979. Chemical Equilibria in Soils. John Wiley & Sons Inc,New York :329-342.
[9] Ma, Q.Y., Traina, S.J., Logan, T.J., Ryan, J.A., 1994. Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite.
Environmental Science and Technology, 28(7):1219-1228.
[10] Mavropoulos, E., Rossi, A.M., Costa, A.M., Perez, C.A.C., Moreira, J.C., 2002. Studies on the mechanisms of lead immobilization by hydroxyapatite.
Environmental Science & Technology, 36(7):1625-1629.
[11] Mignardi, S., Corami, A., Ferrini, V., 2012. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn.
Chemosphere, 86(4):354-360.
[12] Nriagu, J.O., 1984. Formation and Stability of Base Metal Phosphates in Soils and Sediment. Phosphate Minerals. Springer-Verlag,London :318-329.
[13] Padmi, S.T., Tanaka, M., Aoyama, I., 2009. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation.
Waste Management, 29(7):2065-2070.
[14] Piantone, P., Bodnan, F., Derie, R., Depelsenaire, G., 2003. Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach.
Waste Management, 23(3):225-243.
[15] Qian, G., Chen, W., Lim, T.T., Chui, P., 2009. In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives.
Journal of Hazardous Materials, 170(2-3):1093-1100.
[16] Quina, M.J., Bordado, ., João, C.M., Quinta-Ferreira, R.M., 2010. Chemical stabilization of air pollution control residues from municipal solid waste incineration.
Journal of Hazardous Materials, 179(1-3):382-392.
[17] Raicevic, S., Perovic, V., Zouboulis, A.I., 2009. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil.
Waste Management, 29(5):1779-1784.
[18] Rio, S., Verwilghen, C., Ramaroson, J., Nzihou, A., Sharrock, P., 2007. Heavy metal vaporization and abatement during thermal treatment of modified wastes.
Journal of Hazardous Materials, 148(3):521-528.
[19] Sun, Y., Zheng, J., Zou, L., Liu, Q., Zhu, P., Qian, G., 2011. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals.
Waste Management, 31(2):325-330.
[20] Tang, X.Y., Zhu, Y.G., Chen, S.B., Tang, L.L., Chen, X.P., 2004. Assessment of the effectiveness of different fertilizers to remediate Pb-contaminated soil using in vitro test.
Environment International, 30(4):531-537.
[21] Tang, P., Zhao, Y.C., Chen, D.Z., Xia, F.Y., 2008. Volatility of heavy metals during incineration of tannery sludge in the presence of chlorides and phosphoric acid.
Waste Management & Research, 26(4):369-376.
[22] Tang, P., Zhao, Y.C., Xia, F.Y., 2008. Thermal behaviors and heavy metal vaporization of phosphatized tannery sludge in incineration process.
Journal of Environmental Sciences, 20(9):1146-1152.
[23] Theodoratos, P., Papassiopi, N., Xenidis, A., 2002. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion.
Journal of Hazardous Materials, 94(2):135-146.
[24] US EPA, 1992. Toxicity Characteristic Leaching Procedure (Method 1311) in SW-846. Office of Solid Waste,Washington DC :
[25] Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P., 2008. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC).
Journal of Hazardous Materials, 151(1):96-102.
[26] Xu, Y., Schwartz, F.W., 1994. Lead immobilization by hydroxyapatite in aqueous solutions.
Journal of Contaminant Hydrology, 15(3):187-206.
[27] Zhang, P., Ryan, J.A., Bryndzia, L.T., 1997. Pyromorphite formation from goethite adsorbed lead.
Environmental Science and Technology, 31(9):2673-2678.
Open peer comments: Debate/Discuss/Question/Opinion
<1>