Full Text:   <3846>

Summary:  <2603>

CLC number: TP391.73; TG547

On-line Access: 2014-03-04

Received: 2013-08-15

Revision Accepted: 2013-12-10

Crosschecked: 2014-02-20

Cited: 0

Clicked: 12261

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.3 P.157-171

http://doi.org/10.1631/jzus.A1300274


A morphing machining strategy for artificial bone*


Author(s):  Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin

Affiliation(s):  . State Key Laboratory of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   fjz@zju.edu.cn

Key Words:  Morphing machining strategy (MMS), Energy-based morphing, Tool path generation, T-spline surface, Artificial bone


Share this article to: More |Next Article >>>

Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin. A morphing machining strategy for artificial bone[J]. Journal of Zhejiang University Science A, 2014, 15(3): 157-171.

@article{title="A morphing machining strategy for artificial bone",
author="Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin",
journal="Journal of Zhejiang University Science A",
volume="15",
number="3",
pages="157-171",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300274"
}

%0 Journal Article
%T A morphing machining strategy for artificial bone
%A Wen-feng Gan
%A Jian-zhong Fu
%A Hong-yao Shen
%A Zhi-wei Lin
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 3
%P 157-171
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300274

TY - JOUR
T1 - A morphing machining strategy for artificial bone
A1 - Wen-feng Gan
A1 - Jian-zhong Fu
A1 - Hong-yao Shen
A1 - Zhi-wei Lin
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 3
SP - 157
EP - 171
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300274


Abstract: 
In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a t-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabrication. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.

一种基于曲面变形的人工骨骼渐进式加工方法

研究目的:研究人工骨骼等细长工件的无弯折加工方法。
创新要点:1.提出了一种基于曲面变形的渐进式加工方法,该方法保证加工余量在全曲面均匀分布,防止工件弯折;2.利用能量最小化实现T样条曲面的渐进变形;3.将该方法应用于以T样条曲面表示的人工指骨加工中。
研究方法:1.算法总体分为生成多层变形曲面和层内刀具路径规划两部分(见图5);2.对T样条曲面采用基于能量最小化的变形方法,以加工切深作为变形约束条件,生成多层变形曲面作为每刀的加工目标形状(见图10);3.每层变形曲面内按限残高标准生成刀具路径(见图12)。
重要结论:采用该加工方法可以提高细长形工件的加工质量,保证加工后形状误差不超限。

关键词:渐进式加工;能量最小化曲面变形;T样条曲面;人工骨骼

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] . Autodesk T-splines Plug-in for Rhino. , Available from http://www.tsplines.com,:

[2] Bazilevs, Y., Calo, V.M., Cottrell, J.A., 2010. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199(5-8):229-263. 


[3] Botsch, M., 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 14(1):213-230. 


[4] Chen, W., Li, Y., Zheng, J., 2011. T-splines in VRML. , Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Hong Kong, China, 257-264. :257-264. 


[5] Chen, Y.H., Hu, Y.N., 1999. Implementation of a robot system for sculptured surface cutting. Part 1. Rough machining. International Journal of Advanced Manufacturing Technology, 15(9):624-629. 

[6] Chuang, S.H.F., Wang, I.Z., 2000. Multipatched B-spline surfaces and automatic rough cut path generation. International Journal of Advanced Manufacturing Technology, 16(2):100-106. 


[7] Da Costa, D.D., Lajarin, S.F., 2012. Comparison of cranioplasty implants produced by machining and by casting in a gypsum mold. International Journal of Advanced Manufacturing Technology, 58(1-4):1-8. 


[8] Dai, N., Dong, G.L., Liao, W.H., 2013. Dental restoration contour-parallel offset tool path links based on graph model. International Journal of Advanced Manufacturing Technology, 66(1-4):555-563. 


[9] Deng, J.S., Chen, F., Li, X., 2008. Polynomial splines over hierarchical T-meshes. Graphical Models, 70:76-86. 


[10] Gaspar, M., Weichert, F., 2013. Integrated construction and simulation of tool paths for milling dental crowns and bridges. Computer-Aided Design, 45(10):1170-1181. 


[11] Giannatsis, J., Dedoussis, V., 2009. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology, 40(1-2):116-127. 


[12] Grant, M., Boyd, S., 2008. Graph implementations for nonsmooth convex programs.  Recent Advances in Learning and Control. Springer,London :95-110. 

[13] Grant, M., Boyd, S., 2012. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 beta. , Available from http://cvxr.com/cvx,[Accessed on March 2013],:

[14] He, J.K., Li, D.C., Lu, B.H., 2006. Custom fabrication of a composite hemi-knee joint based on rapid prototyping. Rapid Prototyping Journal, 12(4):198-205. 


[15] Hu, S.M., Li, Y.F., Ju, T., 2001. Modifying the shape of NURBS surfaces with geometric constraints. Computer-Aided Design, 33(12):903-912. 


[16] Hu, Y.N., Tse, W.C., Chen, Y.H., 1998. Tool-path planning for rough machining of a cavity by layer-shape analysis. International Journal of Advanced Manufacturing Technology, 14(5):321-329. 


[17] Kim, H.C., 2010. Tool path generation for contour parallel milling with incomplete mesh model. International Journal of Advanced Manufacturing Technology, 48(5-8):443-454. 


[18] Kim, H.C., Yang, M.Y., 2008. Incomplete mesh-based tool path generation for optimum zigzag milling. International Journal of Advanced Manufacturing Technology, 35(7-8):803-813. 


[19] Lauwers, B., Lefebvre, P.P., 2006. Five-axis rough milling strategies for complex shaped cavities based on morphing technology. CIRP Annals-Manufacturing Technology, 55(1):59-62. 


[20] Lian, Q., Li, D.C., Tang, Y.P., 2006. Computer modeling approach for a novel internal architecture of artificial bone. Computer-Aided Design, 38(5):507-514. 


[21] Lin, Z., Fu, J., He, Y., 2013. A robust 2D point-sequence curve offset algorithm with multiple islands for contour-parallel tool path. Computer-Aided Design, 45(3):657-670. 


[22] Luo, Y.X., He, K., Du, R.X., 2010. A new sheet metal forming system based on the incremental punching, part 1: Modeling and simulation. International Journal of Advanced Manufacturing Technology, 51(5-8):481-491. 


[23] Moore, P., Molloy, D., 2007. A survey of computer-based deformable models. , Proceedings of the International Machine Vision and Image Processing Conference, IEEE Computer Society, 55-66. :55-66. 


[24] Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., 2011. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 200(47-48):3410-3424. 


[25] Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A., 2011. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 200(21-22):1892-1908. 


[26] Porter, J.R., Ruckh, T.T., Popat, K.C., 2009. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 25(6):1539-1560. 


[27] Sarkar, S., Dey, P., 2013. Tool path generation for algebraically parameterized surface. Journal of Intelligent Manufac-turing, :1-7. 


[28] Sederberg, T.N., Zheng, J.M., Bakenov, A., 2003. T-splines and T-NURCCs. ACM Transactions on Graphics, 22(3):477-484. 


[29] Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. ACM Siggraph Computer Graphics, 20(4):151-160. 


[30] Sederberg, T.W., Cardon, D.L., Finnigan, G.T., 2004. T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3):276-283. 


[31] Song, W.H., Yang, X.N., 2005. Free-form deformation with weighted T-spline. Visual Computer, 21(3):139-151. 


[32] Su, X.B., Yang, Y.Q., Yu, P., 2012. Development of porous medical implant scaffolds via laser additive manufacturing. Transactions of Nonferrous Metals Society of China, 22:S181-S187. 

[33] Su, X.B., Yang, Y.Q., Xiao, D.M., 2013. An investigation into direct fabrication of fine-structured components by selective laser melting. International Journal of Advanced Manufacturing Technology, 64(9-12):1231-1238. 


[34] Suresh, K., Yang, D.C.H., 1994. Constant scallop-height machining of free-form surfaces. Journal of Engineering for Industry-Transactions of the ASME, 116(2):253-259. 


[35] Terzopoulos, D., Witkin, A., Kass, M., 1988. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence, 36(1):91-123. 


[36] Wang, W.Y., Zhang, Y.J., Scott, M.A., 2011. Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics, 48(4):477-498. 


[37] Wu, W.Z., Zhang, Y., Li, H., 2009. Fabrication of repairing skull bone defects based on the rapid prototyping. Journal of Bioactive and Compatible Polymers, 24(suppl.1):125-136. 


[38] Xu, J.H., Zhang, S.Y., Tan, J.R., 2013. Collisionless tool orientation smoothing above blade stream surface using NURBS envelope. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(3):187-197. 


[39] Yang, H.P., Juttler, B., 2007. 3D shape metamorphosis based on T-spline level sets. Visual Computer, 23(12):1015-1025. 


[40] Yang, X.N., Zheng, J.M., 2012. Approximate T-spline surface skinning. Computer-Aided Design, 44(12):1269-1276. 


[41] Zhu, X.F., Hu, P., Ma, Z.D., 2013. A new surface parameterization method based on one-step inverse forming for isogeometric analysis-suited geometry. International Journal of Advanced Manufacturing Technology, 65(9-12):1215-1227. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

1@11<12@12.df>

2014-03-28 15:15:36

it is a good paper,recommend!!

amisan@12<12@12.df>

2014-03-28 14:53:20

In this work, a novel morphing machining strategy (MMS) is proposed. It is a good paper.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE