Full Text:   <3311>

Summary:  <2182>

CLC number: TB3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-12-20

Cited: 2

Clicked: 7690

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.1 P.61-67

http://doi.org/10.1631/jzus.A1300283


Skin-core adhesion in high performance sandwich structures*


Author(s):  Yi-ou Shen1, Wesley Cantwell2, Yan Li1

Affiliation(s):  1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; more

Corresponding email(s):   syoeva@tongji.edu.cn

Key Words:  Sandwich structure, Interfacial fracture toughness, Flexural property


Yi-ou Shen, Wesley Cantwell, Yan Li. Skin-core adhesion in high performance sandwich structures[J]. Journal of Zhejiang University Science A, 2014, 15(1): 61-67.

@article{title="Skin-core adhesion in high performance sandwich structures",
author="Yi-ou Shen, Wesley Cantwell, Yan Li",
journal="Journal of Zhejiang University Science A",
volume="15",
number="1",
pages="61-67",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300283"
}

%0 Journal Article
%T Skin-core adhesion in high performance sandwich structures
%A Yi-ou Shen
%A Wesley Cantwell
%A Yan Li
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 1
%P 61-67
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300283

TY - JOUR
T1 - Skin-core adhesion in high performance sandwich structures
A1 - Yi-ou Shen
A1 - Wesley Cantwell
A1 - Yan Li
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 1
SP - 61
EP - 67
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300283


Abstract: 
The aim of this study is to characterize the interfacial fracture toughness of a micro-lattice core based sandwich structure from quasi-static to dynamic rates of loading. The modified three-point bend (MTPB) sandwich beam was used to characterize the interfacial properties of these sandwich structures. Dynamic tests were undertaken of up to 3 m/s using a purpose-built instrumented drop-weight impact tower. Data reduction was accomplished through the use of a compliance calibration procedure similar to that used for characterizing the delamination resistance of composites. The flexural properties of sandwich beams were investigated through three-point bend tests at a cross-head displacement rate of up to 3 m/s. A detailed examination of the impact region highlighted the failure processes in these systems and this was related to the data from the quasi-static flexural tests. The globalized deformation and energy absorption during progressive were also discussed.

高性能夹芯结构的面板与芯材的黏合性能

研究目的:通过准静态到动态的加载,研究以不锈钢点阵结构为芯材的夹芯结构的层间断裂韧性。
创新方法:制备的夹芯结构不需要黏合剂,但是具有优异的面板-芯材界面性能;证明改良后的三点弯曲实验可用于研究夹芯结构在低速冲击下的界面性能。
研究手段:采用改良后的三点弯曲实验(见图2)测试夹芯结构的面板-芯材断裂韧性;采用低速冲击来测试夹芯结构的抗分层性能(见图5)和吸收能量性能(见图8)。
重要结论:1.采用热压法制备的以碳纤维增强环氧树脂预浸料为面板,不锈钢点阵结构为芯材的夹芯结构不需要任何粘合剂;2.所得夹芯结构在受到准静态和动态三点弯曲加载时展现了优异的抗面板-芯材界面分层性能,断裂能达到5500 J/m2;3.改良的三点弯曲实验可以用于测试低速冲击条件下夹芯结构的断裂性能。

关键词:夹芯结构;层间断裂韧性;弯曲性能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ashby, M.F., Evans, A., Fleck, N.A., 2000.  Metal Foams: A Design Guide. Butterworth-Heinemann,Oxford :

[2] Brooks, W.K., Todd, J., Sutcliffe, C.J., 2005. The production of open cellular lattice structures using selective laser melting. , Sixth National Conference on Rapid Prototyping, Design, and Manufacturing, Lancaster University, UK, :

[3] Cantwell, W.J., Davies, P., 1994. A test technique for assessing core-skin adhesion in composite sandwich structures. Journal of Materials Science Letters, 13(3):203-205. 


[4] Cantwell, W.J., Broster, G., Davies, P., 1996. The Influence of water immersion on skin-core debonding in GFRP-Balsa sandwich structures. Journal of Reinforced Plastic and Composites, 15:1161-1172. 

[5] Cantwell, W.J., Scudamore, R.J., Davies, P., 1997. A study of skin-core adhesion in composite sandwich materials. , Proceedings of 11th International Composite Materials, Woodhead, 905-914. :905-914. 

[6] Chiras, S., Mumm, D.R., Evans, A.G., 2002. The structural performance of near-optimized truss core panels. International Journal of Solids and Structures, 39(15):4093-4115. 


[7] Deshpande, V.S., Fleck, N.A., 2001. Collapse of truss core sandwich beam in 3-point bending. International Journal of Solids and Structures, 38(36-37):6275-6305. 


[8] Deshpande, V.S., Ashby, M.F., Fleck, N.A., 2001. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8):1747-1769. 


[9] Deshpande, V.S., Ashby, M.F., Fleck, N.A., 2001. Foam topology bending versus stretching dominated architectures. Acta Materialia, 49(6):1035-1040. 


[10] McKown, S., Cantwell, W.J., Brooks, W.K., 2007. High-performance sandwich structures with hierarchical lattice cores. , Proceedings of 28th International European SAMPE, Europe, 396-401. :396-401. 

[11] McKown, S., Shen, Y., Brooks, W.K., 2008. The quasistatic and blast loading response of lattice structures. International Journal of Impact Engineering, 35(8):795-810. 


[12] Mines, R.A.W., 2008. On the characterisation of foam and micro-lattice materials used in sandwich construction. Strain, 44(1):71-83. 


[13] Mines, R.A.W., McKown, S., Tsopanos, S., 2008. Local effects during indentation of fully supported sandwich panels with micro lattice cores. Applied Mechanics and Materials, 13-14:85-90. 


[14] Reyes, G., Cantwell, W.J., 2000. The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene. Composites Science and Technology, 60(7):1085-1094. 


[15] Santorinaios, M., Brooks, W., Sutcliffe, C.J., 2006. Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Transactions on the Built Environment, 85:481-490. 

[16] Scudamore, R., 1999. Interfacial Fracture in Sandwich Laminates, PhD Thesis, University of Liverpool :

[17] Shen, Y., McKown, S., Tsopanos, S., 2010. The mechanical properties of sandwich structures based on metal lattice architectures. Journal of Sandwich Structures and Materials, 12(2):159-180. 


[18] Shen, Y., Cantwell, W.J., Mines, R., 2013. Low-velocity impact performance of lattice structure core based sandwich panels. Journal of Composite Materials, in press,:


[19] Wang, J., Evans, A.G., Dharmasena, K., 2003. On the performance of truss panels with Kagome cores. International Journal of Solids and Structures, 40(25):6981-6988. 


[20] Zenkert, D., 1989. Poly(vinyl chloride) sandwich core materials: Fracture behaviour under mode II loading and mixed-mode conditions. Materials Science and Engineering: A, 108:233-240. 


[21] Zok, F.W., Rathbun, H.J., Wei, Z., 2003. Design of metallic textile core sandwich panels. International Journal of Solids and Structures, 40(21):5707-5722. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE