References
[1] Bove, R., Ubertini, S., 2006. Modeling solid oxide fuel cell operation: approaches, techniques and results. 
Journal of Power Sources, 159(1):543-559. 

 [2] Cao, H.L., Deng, Z.H., Li, X., 2010. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives. 
International Journal of Hydrogen Energy, 35(4):1749-1758. 

 [3] Chakraborty, U.K., 2011. An error in solid oxide fuel cell stack modeling. 
Energy, 36(2):801-802. 

 [4] Entchev, E., Yang, L.B., 2007. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation. 
Journal of Power Sources, 170(1):122-129. 

 [5] Ge, Z.Q., Song, Z.H., 2008. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. 
Control Engineering Practice, 16(12):1427-1437. 

 [6] Hajimolana, S.A., Tonekabonimoghadam, S.M., Hussain, M.A., 2013. Thermal stress management of a solid oxide fuel cell using neural network predictive control. 
Energy, 62:320-329. 

 [7] Hsu, C.C., Wu, C.H., Chen, S.C., 2006. Dynamically optimizing parameters in support vector regression: an application of electricity load forecasting. 
, Proceedings of the 39th Annual Hawaii International Conference on System Sciences, Kauai, USA, 30c:30c

 [8] Huo, H.B., Zhong, Z.D., Zhu, X.J., 2008. Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model. 
Journal of Power Sources, 175(1):441-446. 

 [9] Jiang, J.H., Li, X., Deng, Z.H., 2013. Control-oriented dynamic model optimization of steam reformer with an improved optimization algorithm. 
International Journal of Hydrogen Energy, 38(26):11288-11302. 

 [10] Jurado, F., 2004. Modeling SOFC plants on the distribution system using identification algorithms. 
Journal of Power Sources, 129(2):205-215. 

 [11] Kazempoor, P., Ommi, F., Dorer, V., 2011. Response of a planar solid oxide fuel cell to step load and inlet flow temperature changes. 
Journal of Power Sources, 196(21):8948-8954. 

 [12] Kim, Y., Son, M., Lee, I.B., 2011. Numerical study of a planar solid oxide fuel cell during heat-up and start-up operation. 
Industrial and Engineering Chemistry Research, 50(3):1360-1368. 

 [13] Li, J., Kang, Y.W., Cao, G.Y., 2008. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method. 
Journal of Zhejiang University-SCIENCE A, 9(7):961-969. 

 [14] Lu, N., Li, Q., Sun, X., 2006. The modeling of a standalone solid-oxide fuel cell auxiliary power unit. 
Journal of Power Sources, 161(2):938-948. 

 [15] Mao, W.T., Yan, G.R., Dong, L.L., 2011. Model selection for least squares support vector regressions based on small-world strategy. 
Expert Systems with Applications, 38(4):3227-3237. 

 [16] Menon, V., Janardhanan, V.M., Tischer, S., 2012. A novel approach to model the transient behavior of solid-oxide fuel cell stacks. 
Journal of Power Sources, 214:227-238. 

 [17] Murshed, A.M., Huang, B., Nandakumar, K., 2007. Control relevant modeling of planer solid oxide fuel cell system. 
Journal of Power Sources, 163(2):830-845. 

 [18] Padulls, J., Ault, G.W., McDonald, J.R., 2000. An integrated SOFC plant dynamic model for power systems simulation. 
Journal of Power Sources, 86(1-2):495-500. 

 [19] Qu, J., Zuo, M.J., 2012. An LSSVR-based algorithm for online system condition prognostics. 
Expert Systems with Applications, 39(5):6089-6102. 

 [20] Salogni, A., Colonna, P., 2010. Modeling of solid oxide fuel cells for dynamic simulations of integrated systems. 
Applied Thermal Engineering, 30(5):464-477. 

 [21] Sedghisigarchi, K., 2004.  Solid Oxide Fuel Cell as a Distributed Generator: Dynamic Modeling, Stability Analysis and Control. PhD Thesis, West Virginia University,Morgantown, USA :
 [22] So-ryeok, O., Jing, S., Herb, D., 2013. Dynamic characteristics and fast load following of 5-kW class tubular solid oxide fuel cell/micro-gas turbine hybrid systems. 
International Journal of Energy Research, 37(10):1242-1255. 

 [23] Suykens, J.A.K., van Gestel, T., de Brabanter, J., 2002.  Least Squares Support Vector Machines. World Scientific,Singapore :98-114. 
 [24] Wang, H., Li, E., Li, G.Y., 2011. Probability-based least square support vector regression metamodeling technique for crashworthiness optimization problems. 
Computational Mechanics, 47(3):251-263. 

 [25] Wang, L.J., Zhang, H.S., Weng, S.L., 2008. Modeling and simulation of solid oxide fuel cell based on the volume-resistance characteristic modeling technique. 
Journal of Power Sources, 177(2):579-589. 

 [26] Wu, X.J., Huang, Q., Zhu, X.J., 2011. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM. 
International Journal of Hydrogen Energy, 36(1):885-892. 

 [27] Xu, G.M., Huang, S.G., 2011. Runway incursion event forecast model based on LS-SVR with multi-kernel. 
Journal of Computers, 6(7):1346-1352. 

 [28] Yan, G., 2009. Forecasting of freight volume based on support vector regression optimized by genetic algorithm. 
, The 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 550-553. :550-553. 

 [29] Yang, C.C., Shieh, M.D., 2010. A support vector regression based prediction model of affective responses for product form design. 
Computers and Industrial Engineering, 59(4):682-689. 

 [30] Yang, J., Li, X., Mou, H.G., 2009. Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model. 
Journal of Power Sources, 188(2):475-482. 

 [31] Yang, Z., Gu, X.S., Liang, X.Y., 2010. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. 
Materials and Design, 31(3):1042-1049. 

 [32] Zhang, T.J., Feng, G., 2009. Rapid load following of an SOFC power system via stable fuzzy predictive tracking controller. 
IEEE Transactions on Fuzzy Systems, 17(2):357-371. 

 
Open peer comments: Debate/Discuss/Question/Opinion
<1>