CLC number: X701
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-06-24
Cited: 3
Clicked: 9602
Yong Nie, Xiao-jiang Liang, Mei-zhen Lu, Feng-wen Yu, Da-yong Gu, Min Min, Jian-bing Ji. Mass transfer and reaction kinetics of sulfuryl fluoride absorption with aqueous sodium hydroxide solutions[J]. Journal of Zhejiang University Science A, 2014, 15(7): 540-546.
@article{title="Mass transfer and reaction kinetics of sulfuryl fluoride absorption with aqueous sodium hydroxide solutions",
author="Yong Nie, Xiao-jiang Liang, Mei-zhen Lu, Feng-wen Yu, Da-yong Gu, Min Min, Jian-bing Ji",
journal="Journal of Zhejiang University Science A",
volume="15",
number="7",
pages="540-546",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400055"
}
%0 Journal Article
%T Mass transfer and reaction kinetics of sulfuryl fluoride absorption with aqueous sodium hydroxide solutions
%A Yong Nie
%A Xiao-jiang Liang
%A Mei-zhen Lu
%A Feng-wen Yu
%A Da-yong Gu
%A Min Min
%A Jian-bing Ji
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 7
%P 540-546
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400055
TY - JOUR
T1 - Mass transfer and reaction kinetics of sulfuryl fluoride absorption with aqueous sodium hydroxide solutions
A1 - Yong Nie
A1 - Xiao-jiang Liang
A1 - Mei-zhen Lu
A1 - Feng-wen Yu
A1 - Da-yong Gu
A1 - Min Min
A1 - Jian-bing Ji
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 7
SP - 540
EP - 546
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400055
Abstract: The mass transfer and reaction kinetics of sulfuryl fluoride (SO2F2) absorption with aqueous sodium hydroxide (NaOH) solutions were studied in an experimental double-stirred cell. Results showed that SO2F2 absorption with NaOH was followed by a reaction model employing a fast pseudo-first-order. The second-order rate constant for SO2F2 absorption with aqueous NaOH solutions was determined to be 1.44 m3/(mol·s) at 298 K. Three models were used in this chemical absorption process, and in each case, the same expression of enhancement factor was obtained. A comparison was made between the experimental enhancement factor and the value calculated from the model, and the maximum relative deviation was less than 4.2%. The proposed model expression gave a reasonable fit with the experimental values, indicating that mass transfer correlations are valid for scaling up design.
Open peer comments: Debate/Discuss/Question/Opinion
<1>