References
[1] Beyer, M.K., Clausen-Schaumann, H., 2005. Mechanochemistry: The mechanical activation of covalent bonds.
Chemical Reviews, 105(8):2921-2948.

[2] Boldyrev, V.V., Tkčov, K., 2000. Mechanochemistry of solids: Past, present, and prospects.
Journal of Materials Synthesis and Processing, 8(3-4):121-132.

[3] Bordag, M., Mohideen, U., Mostepanenko, V.M., 2001. New developments in the Casimir effect.
Physics Reports, 353(1-3):1-205.

[4] Chen, C.Q., Shi, Y., Zhang, Y.S., 2006. Size dependence of Young’s modulus in ZnO nanowires.
Physical Review Letters, 96(7):075505

[5] Chen, W.Q., 2011. Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space.
Theoretical and Applied Mechanics Letters, 1(4):041001

[6] Cowin, S.C., 2004. Tissue growth and remodeling.
Annual Review of Biomedical Engineering, 6(1):77-107.

[7] Cui, Z., Gao, F., Qu, J., 2012. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries.
Journal of the Mechanics and Physics of Solids, 60(7):1280-1295.

[8] Duan, H.L., Wang, J., Karihaloo, B.L., 2008. Theory of elasticity at the nanoscale.
Advances in Applied Mechanics, 42(1):1-68.
[9] Ekinci, K.L., Roukes, M.L., 2005. Nanoelectromechanical systems.
Review of Scientific Instruments, 76(6):061101

[10] Epstein, M., 2010.
, London: Cambridge University Press,:

[11] Eringen, A.C., 1980. Mechanics of Continua. Robert E. Krieger Publishing Co.,Huntington, New York :
[12] Fish, J., 2006. Bridging the scales in nano engineering and science.
Journal of Nanoparticle Research, 8(5):577-594.

[13] Freund, L.B., 2009. Characterizing the resistance generated by a molecular bond as it is forcibly separated.
Proceedings of the National Academy of Sciences of the United States of America, 106(22):8818-8823.

[14] Fukada, E., 1968. Piezoelectricity in polymers and biological materials.
Ultrasonics, 6(4):229-234.

[15] Fung, Y.C., 1990. Biomechanics: Motion, Flow, Stress and Growth. Springer,Berlin :

[16] Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissues. Springer,Berlin :

[17] Fung, Y.C., 1996. Biomechanics: Circulation. Springer,Berlin :
[18] Gilman, J.J., 1996. Mechanochemistry.
Science, 274(5284):65

[19] Girard, P.P., Cavalcanti-Adam, E.A., Kemkemer, R., 2007. Cellular chemomechanics at interfaces: Sensing, integration and response.
Soft Matter, 3(3):307-326.

[20] Griffith, A.A., 1921. The phenomena of rupture and flow in solids.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221(582):163-198.

[21] Harik, V.M., 2001. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods.
Solid State Communications, 120(7-8):331-335.

[22] Herglotz, G., 1911. Über die mechanik des deformierbaren körpers vom standpunkte der relativitätstheorie.
Annalen der Physik, (in German),341(13):493-533.

[23] Hu, H.C., 1955. On some variational principles in the theory of elasticity and the theory of plasticity.
Scientia Sinica, 4(1):33-54.
[24] Hu, L.B., Hueckel, T., 2007. Coupled chemo-mechanics of intergranular contact: Toward a three-scale mode.
Computers and Geotechnics, 34(4):306-327.

[25] Huang, Z., Boulatov, R., 2011. Chemomechanics: Chemical kinetics for multiscale phenomena.
Chemical Society Reviews, 40(5):2359-2384.

[26] Humphrey, J.D., 2003. Continuum biomechanics of soft biological tissues.
Proceedings of the Royal Society of London A, 459(2029):3-46.

[27] Ingber, D.E., 2006. Cellular mechanotransduction: Putting all the pieces together again.
The FASEB Journal, 20(7):811-827.

[28] Janmey, P.A., McCulloch, C.A., 2007. Cell mechanics: Integrating cell responses to mechanical stimuli.
Annual Review of Biomedical Engineering, 9(1):1-34.

[29] Kim, D.H., Lu, N.S., Ma, R., 2011. Epidermal electronics.
Science, 333(6044):838-843.

[30] Li, B., Cao, Y.P., Feng, X.Q., 2012. Mechanics of morphological instabilities and surface wrinkling in soft materials: A review.
Soft Matter, 8(21):5728-5745.

[31] Liu, D.Y., Chen, W.Q., Zhang, C.Z., 2013. Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect.
Physics Letters A, 377(18):1297-1300.

[32] Liu, Y.M., Zhang, Y.H., Chow, M.J., 2012. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy.
Physical Review Letters, 108(7):078103

[33] Maugin, G.A., 2013. Continuum Mechanics through the Twentieth Century. Springer,Berlin :

[34] Mller, I., 2007. A History of Thermodynamics. Springer,Berlin :
[35] Prandtl, L., 1904. Über Flüssigkeitsbewegungen bei sehr kleiner Reibung.
, Lecture on International Congress of Mathematicians, Heidelberg, :
[36] Qian, D., Wagner, G.J., Liu, W.K., 2002. Mechanics of carbon nanotubes.
Applied Mechanics Reviews, 55(6):495-533.

[37] Saha, R., Nix, W.D., 2002. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation.
Acta Materialia, 50(1):23-38.

[38] Schwab, K.C., Roukes, M.L., 2005. Putting mechanics into quantum mechanics.
Physics Today, 58(7):36-42.

[39] Shenoy, V.B., 2005. Atomistic calculations of elastic properties of metallic fcc crystal surfaces.
Physical Review B, 71(9):094104

[40] Shi, X.H., von dem Bussche, A., Hurt, R.H., 2011. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation.
Nature Nanotechnology, 6(6):714-719.

[41] Silling, S.A., Lehoucq, R.B., 2010. Peridynamic theory of solid mechanics.
Advances in Applied Mechanics, 44(1):73-166.

[42] Skalak, R., Dasgupta, G., Moss, M., 1982. Analytical description of growth.
Journal of Theoretical Biology, 94(3):555-577.

[43] Stoltz, J.F., Wang, X., 2002. From biomechanics to mechanobiology.
Biorheology, 39(1):5-10.
[44] Taber, L., 1995. Biomechanics of growth, remodeling and morphogenesis.
Applied Mechanics Reviews, 48(8):487-545.

[45] Tadmor, E.B., Phillips, R., Ortiz, M., 1996. Mixed atomistic and continuum models of deformation in solids.
Langmuir, 12(19):4529-4534.

[46] Truesdell, C.A., Toupin, R.A., 1960. The Classical Field Theories. Bd. III/1 in Handbuch der Physik. Springer,Berlin :
[47] Truesdell, C.A., Noll, W., 1965. The Non-linear Field Theories of Mechanics. Bd. III/3 in Handbuch der Physik. Springer,Berlin :
[48] Tsien, H.S., 1953. Physical mechanics, a new field in engineering science.
Journal of the American Rocket Society, 23(1):14-16.

[49] Turner, M.J., Clough, R.W., Martin, H.C., 1956. Stiffness and deflection analysis of complex structures.
Journal of the Aeronautical Sciences, 25(9):805-823.

[50] Volokh, K.Y., 2013. Challenge of biomechanics.
Molecular & Cellular Biomechanics, 10(2):107-135.
[51] Wang, Q., 2005. Wave propagation in carbon nanotubes via nonlocal continuum mechanics.
Journal of Applied Physics, 98(12):124301

[52] Wilson, J.S., Virag, L., Di Achille, P., 2013. Bio-chemomechanics of intraluminal thrombus in abdominal aortic aneurysms.
Journal of Biomechanical Engineering, 135(2):021011

[53] Wong, E.W., Sheehan, P.E., Lieber, C.M., 1997. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes.
Science, 277(5334):1971

[54] Xiao, X., Liu, P., Verbrugge, M.W., 2011. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries.
Journal of Power Sources, 196(3):1409-1416.

[55] Yakobson, B.I., Brabec, C.J., Bernholc, J., 1996. Nanomechanics of carbon tubes: Instabilities beyond linear response.
Physical Review Letters, 76(14):2511-2514.

[56] Young, R.J., Kinlocha, I.A., Gong, L., 2012. The mechanics of graphene nanocomposites: A review.
Composites Science and Technology, 72(12):1459-1476.

[57] Zhang, P., Huang, Y., Geubelle, P.H., 2002. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials.
International Journal of Solids and Structures, 39(13-14):3893-3906.

[58] Zhang, W.L., Lin, Y., Qian, J., 2013. Tuning molecular adhesion via material anisotropy.
Advanced Functional Materials, 23(37):4729-4738.

[59] Zhang, X., Jiao, K., Sharma, P., 2006. An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene.
Journal of the Mechanics and Physics of Solids, 54(11):2304-2329.

[60] Zhao, K.J., Pharr, M., Vlassak, J.J., 2011. Inelastic hosts as electrodes for high-capacity lithium-ion batteries.
Journal of Applied Physics, 109(1):016110

Open peer comments: Debate/Discuss/Question/Opinion
<1>