Full Text:   <3094>

Summary:  <2338>

CLC number: TK14

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-30

Cited: 0

Clicked: 6757

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.11 P.883-895

http://doi.org/10.1631/jzus.A1400100


Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic behavior analysis


Author(s):  Wei Li, De-ren Sheng, Jian-hong Chen, Yong-qiang Che

Affiliation(s):  Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   energy@zju.edu.cn

Key Words:  Hamilton principle, Two-span rotor system, Nonlinear seal force, Dynamic characteristic


Wei Li, De-ren Sheng, Jian-hong Chen, Yong-qiang Che. Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic behavior analysis[J]. Journal of Zhejiang University Science A, 2014, 15(11): 883-895.

@article{title="Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic behavior analysis",
author="Wei Li, De-ren Sheng, Jian-hong Chen, Yong-qiang Che",
journal="Journal of Zhejiang University Science A",
volume="15",
number="11",
pages="883-895",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400100"
}

%0 Journal Article
%T Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic behavior analysis
%A Wei Li
%A De-ren Sheng
%A Jian-hong Chen
%A Yong-qiang Che
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 11
%P 883-895
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400100

TY - JOUR
T1 - Modeling a two-span rotor system based on the Hamilton principle and rotor dynamic behavior analysis
A1 - Wei Li
A1 - De-ren Sheng
A1 - Jian-hong Chen
A1 - Yong-qiang Che
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 11
SP - 883
EP - 895
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400100


Abstract: 
A nonlinear dynamic model of a two-span rotor system is constructed based on the hamilton principle and the finite element method. The Musznyska model and the short bearing model are employed to describe the nonlinear seal force and oil-film force. The fourth-order Runge-Kutta method is used to calculate the numerical solutions. The bifurcation diagrams, time-history diagrams, phase trajectories, and Poincare maps are presented to analyze the dynamic behavior of the bearing center and the disk center in the horizontal direction. The numerical results indicate that the rotational speed, the nonlinear seal force, the oil-film force, and the stiffness of the coupling have a significant effect on the stability of the rotor system. The dynamic behavior of the two-span rotor system is more complicated when impacted by the nonlinear seal force and oil-film force.

基于Hamilton原理的双跨转子系统建模和转子动态特性分析

研究双盘双跨转子/轴承/汽封系统在非线性油膜力和非线性汽封力共同作用下的动力学特性,分析了转子转速、密封力、油膜力和联轴器刚度等因素对转子稳定性的影响。 采用Hamilton原理和有限元方法建立双盘双跨转子/轴承/汽封系统模型,使得双跨多节点的转子系统数值求解更加容易。研究分析转子转速、非线性密封力、非线性油膜力和联轴器刚度等因素对转子稳定性的影响,为大型转子系统的设计提供理论基础。 采用Hamilton原理和有限元方法建立双盘双跨转子/轴承/汽封系统模型(图1和2)。应用四阶Runge-Kutta法进行数值求解,并采用轴承处、圆盘处的分岔图、时程图、庞加莱映射图、频率图和相轨迹图等来分析转子系统的动态特性。 1. 通过数值计算分析,转子的转速、非线性汽封力、非线性油膜力和联轴器的刚度对双跨转子的稳定性有重要的影响作用。2. 随着转速的上升,双跨转子系统从最初的稳定运动,到三倍周期运动,到准周期运动和多倍周期运动交替出现,运动特性相比单跨转子系统要更为复杂。
Hamilton原理;双盘双跨转子系统;非线性汽封力;动态特性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-Nahwi, A.A., Paduano, J.D., Nayfeh, S.A., 2003. Aerodynamic-rotordynamic interaction in axial compression systems-part II: impact of interaction on overall system stability. Journal of Turbomachinery, 125(3):416-424.

[2]Chang-Jian, C.W., 2010. Non-linear dynamic analysis of dual flexible rotors supported by long journal bearings. Mechanism and Machine Theory, 45(6):844-866.

[3]Chen, Y.S., 2009. A number of nonlinear dynamics problems in the rotating machinery development. CCTAM, Zhengzhou, China. The Chinese Society of Theoretical and Applied Mechanics, Beijing, China (in Chinese).

[4]Cheng, M., Meng, G., Jing, J.P., 2008. Numerical analysis of nonlinear rotor-bearing-seal system. Journal of Shanghai Jiaotong University (Science), 13(4):418-425.

[5]Childs, D.W., 1983. Dynamic analysis of turbulent annular seals based on Hirs lubrication equation. Journal of Lubrication Technology, 105(3):429-436.

[6]de Castro, H.F., Cavalca, K.L., Nordmann, R., 2008. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration, 317(1-2):273-293.

[7]Ding, Q., Leung, A.Y.T., 2005. Numerical and experimental investigations on flexible multi-bearing rotor dynamics. Journal of Vibration and Acoustics, 127(4):408-415.

[8]Ertas, B.H., Camatti, M., Mariotti, G., 2010. Synchronous response to rotor imbalance using a damped gas bearing. Journal of Engineering for Gas Turbines and Power, 132(3):032501.

[9]Fei, Z.X., Tong, S.G., Wei, C., 2013. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):268-280.

[10]Li, Q., Liu, S.L., Pan, X.H., et al., 2012. A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(4):293-310.

[11]Li, W., Yang, Y., Sheng, D.R., et al., 2011a. Nonlinear dynamic analysis of a rotor/bearing/seal systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(1):46-55.

[12]Li, W., Yang, Y., Sheng, D.R., et al., 2011b. A novel nonlinear model of rotor/bearing/seal system and numerical analysis. Mechanism and Machine Theory, 46(5):618-631.

[13]Luo, T.S., Wang, S.L., Guo, Y.M., 2007. Application of high-dimensional dynamic system in rotor stability analysis. Journal of Zhejiang University (Engineering Science), 41(6):959-962 (in Chinese).

[14]Luo, Y.G., Zhang, S.H., Wu, B., et al., 2012. Effects of two cracks in shafts on dynamic characteristics of two-span rotor-bearing system. Applied Mechanics and Materials, 271-272:1270-1274.

[15]Muszynska, A., Bently, D.E., 1990. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. Journal of Sound and Vibration, 143(1):103-124.

[16]Okabe, E.P., Cavalca, K.L., 2009. Rotordynamic analysis of systems with a non-linear model of tilting pad bearings including turbulence effects. Nonlinear Dynamics, 57(4):481-495.

[17]Půst, L., Kozánek, J., 2007. Evolutive and nonlinear vibrations of rotor on aerodynamic bearings. Nonlinear Dynamics, 50(4):829-840.

[18]Rashidi, R., Karami Mohammadi, A., Bakhtiari-Nejad, F., 2010a. Preload effect on nonlinear dynamic behavior of a rigid rotor supported by noncircular gas-lubricated journal bearing systems. Nonlinear Dynamics, 60(3):231-253.

[19]Rashidi, R., Karami Mohammadi, A., Bakhtiari-Nejad, F., 2010b. Bifurcation and nonlinear dynamic analysis of a rigid rotor supported by two-lobe noncircular gas-lubricated journal bearing system. Nonlinear Dynamics, 61(4):783-802.

[20]Wang, W.Z., Liu, Y.Z., Meng, G., et al., 2009. Nonlinear analysis of orbital motion of a rotor subject to leakage air flow through an interlocking seal. Journal of Fluids and Structures, 25(5):751-765.

[21]Wu, Q.L., Jing, K., 2008. Study on dynamics characteristic of two-span bearing-rotor system with nonlinear oil film forces. Journal of Liaoning University of Petroleum & Chemical Technology, 28(2):53-57 (in Chinese).

[22]Zeng, P., 2004. Finite Element Analysis and Applications. Tsinghua University Press, Beijing (in Chinese).

[23]Zhou, W.J., Wei, X.S., Wei, X.Z., et al., 2014. Numerical analysis of a nonlinear double disc rotor-seal system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(1):39-52.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE