References
[1] Alidoust, D., Isoda, A., 2013. Effect of gamma Fe
2O
3 nanoparticles on photosynthetic characteristic of soybean (
Glycine max (L.)
Merr.): foliar spray versus soil amendment.
Acta Physiologiae Plantarum, 35(12):3365-3375.
[2] Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.
Annual Review of Plant Biology, 55(1):373-399.
[3] Asli, S., Neumann, P.M., 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport.
Plant, Cell & Environment, 32(5):577-584.
[4] Atha, D.H., Wang, H.H., Petersen, E.J., 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models.
Environmental Science & Technology, 46(3):1819-1827.
[5] Auffan, M., Rose, J., Bottero, J.Y., 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.
Nature Nanotechnology, 4(10):634-641.
[6] Barrena, R., Casals, E., Colon, J., 2009. Evaluation of the ecotoxicity of model nanoparticles.
Chemosphere, 75(7):850-857.
[7] Baruah, S., Dutta, J., 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review.
Environmental Chemistry Letters, 7(3):191-204.
[8] Begum, P., Ikhtiari, R., Fugetsu, B., 2011. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce.
Carbon, 49(12):3907-3919.
[9] Bergeson, L.L., 2010. Nanosilver: US EPA’s pesticide office considers how best to proceed.
Environmental Quality Management, 19(3):79-85.
[10] Birbaum, K., Brogioli, R., Schellenberg, M., 2010. No evidence for cerium dioxide nanoparticle translocation in maize plants.
Environmental Science & Technology, 44(22):8718-8723.
[11] Bouldin, J.L., Ingle, T.M., Sengupta, A., 2008. Aqueous toxicity and food chain transfer of quantum Dots (TM) in freshwater algae and Ceriodaphnia dubia.
Environmental Toxicology and Chemistry, 27(9):1958-1963.
[12] Boxall, A.B., Tiede, K., Chaudhry, Q., 2007. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health?.
Nanomedicine, 2(6):919-927.
[13] Canas, J.E., Long, M.Q., Nations, S., 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species.
Environmental Toxicology and Chemistry, 27(9):1922-1931.
[14] Carpita, N., Sabularse, D., Montezinos, D., 1979. Determination of the pore-size of cell-walls of living plant-cells.
Science, 205(4411):1144-1147.
[15] Castiglione, M.R., Giorgetti, L., Geri, C., 2011. The effects of nano-TiO
2 on seed germination, development and mitosis of root tip cells of
Vicia narbonensis L. and
Zea mays L.
Journal of Nanoparticle Research, 13(6):2443-2449.
[16] Chalew, T.E.A., Ajmani, G.S., Huang, H.O., Schwab, K.J., 2013. Evaluating nanoparticle breakthrough during drinking water treatment.
Environmental Health Perspectives, 121(10):1161-1166.
[17] Cifuentes, Z., Custardoy, L., De La Fuente, J.M., 2010. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants.
Journal of Nanobiotechnology, 8(26):1-8.
[18] Corredor, E., Testillano, P.S., Coronado, M.J., 2009. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification.
BMC Plant Biology, 9:45
[19] De La Torre-Roche, R., Hawthorne, J., Deng, Y., 2012. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species.
Environmental Science & Technology, 46(17):9315-9323.
[20] De La Torre-Roche, R., Hawthorne, J., Musante, C., 2012. Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by
Cucurbita pepo (Zucchini) and
Glycine max (Soybean).
Environmental Science & Technology, 47(2):718-725.
[21] De La Torre-Roche, R., Hawthorne, J., Deng, Y.Q., 2013. Multiwalled carbon nanotubes and C
60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants.
Environmental Science & Technology, 47(21):12539-12547.
[22] Dimkpa, C.O., Latta, D.E., McLean, J.E., 2013. Fate of CuO and ZnO nano- and microparticles in the plant environment.
Environmental Science & Technology, 47(9):4734-4742.
[23] Dimkpa, C.O., McLean, J.E., Latta, D.E., 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat.
Journal of Nanoparticle Research, 14(9):1125
[24] Du, W.C., Sun, Y.Y., Ji, R., 2011. TiO
2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.
Journal of Environmental Monitoring, 13(4):822-828.
[25] Eichert, T., Kurtz, A., Steiner, U., 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles.
Physiologia Plantarum, 134(1):151-160.
[26] El-Temsah, Y.S., Joner, E.J., 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
Environmental Toxicology, 27(1):42-49.
[27] Fadeel, B., Kagan, V., Krug, H., 2007. There’s plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials.
Nanotoxicology, 1(2):73-84.
[28] Fan, R.M., Huang, Y.C., Grusak, M.A., 2014. Effects of nano-TiO
2 on the agronomically-relevant Rhizobium-legume symbiosis.
Science of The Total Environment, 466-467:503-512.
[29] Feichtmeier, N., Leopold, K., 2013. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.
Analytical and Bioanalytical Chemistry, 406(16):3887-3894.
[30] Feizi, H., Moghaddam, P.R., Shahtahmassebi, N., 2012. Impact of bulk and nanosized titanium dioxide (TiO
2) on wheat seed germination and seedling growth.
Biological Trace Element Research, 146(1):101-106.
[31] Feizi, H., Kamali, M., Jafari, L., 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (
Foeniculum vulgare Mill).
Chemosphere, 91(4):506-511.
[32] Feng, Y., Cui, X., He, S., 2013. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth.
Environmental Science & Technology, 47(16):9496-9504.
[33] Foltete, A.S., Masfaraud, J.F., Bigorgne, E., 2011. Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO
2 nanocomposites on
Vicia faba
.
Environmental Pollution, 159(10):2515-2522.
[34] Gajewska, E., Sklodowska, M., 2010. Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings.
Ecotoxicology and Environmental Safety, 73(5):996-1003.
[35] Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., 2000. Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence.
Environmental Science & Technology, 34(20):4392-4396.
[36] Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles.
Langmuir, 19(4):1357-1361.
[37] Gardea-Torresdey, J.L., Rico, C.M., White, J.C., 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments.
Environmental Science & Technology, 48(5):2526-2540.
[38] Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., 2013. Effects of magnetite nanoparticles on soybean chlorophyll.
Environmental Science & Technology, 47(18):10645-10652.
[39] Ghodake, G., Seo, Y.D., Lee, D.S., 2011. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using
Allium cepa
.
Journal of Hazardous Materials, 186(1):952-955.
[40] Ghosh, M., Bandyopadhyay, M., Mukherjee, A., 2010. Genotoxicity of titanium dioxide (TiO
2) nanoparticles at two trophic levels: plant and human lymphocytes.
Chemosphere, 81(10):1253-1262.
[41] Ghosh, S., Mashayekhi, H., Pan, B., 2008. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
Langmuir, 24(21):12385-12391.
[42] Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
Plant Physiology and Biochemistry, 48(12):909-930.
[43] Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., 2008. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues.
Annals of Botany, 101(1):187-195.
[44] Gottschalk, F., Sonderer, T., Scholz, R.W., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO
2, ZnO, Ag, CNT, fullerenes) for different regions.
Environmental Science & Technology, 43(24):9216-9222.
[45] Gottschalk, F., Sun, T.Y., Nowack, B., 2013. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.
Environmental Pollution, 181:287-300.
[46] Gray, E.P., Coleman, J.G., Bednar, A.J., 2013. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.
Environmental Science & Technology, 47(24):14315-14323.
[47] Hassellov, M., Readman, J.W., Ranville, J.F., Tiede, K., 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.
Ecotoxicology, 17(5):344-361.
[48] He, D., Dorantes-Aranda, J.J., Waite, T.D., 2012. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.
Environmental Science & Technology, 46(16):8731-8738.
[49] Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., 2013.
In situ synchrotron X-ray fluorescence mapping and speciation of CeO
2 and ZnO nanoparticles in soil cultivated soybean (
Glycine max).
ACS Nano, 7(2):1415-1423.
[50] Holbrook, R.D., Murphy, K.E., Morrow, J.B., 2008. Trophic transfer of nanoparticles in a simplified invertebrate food web.
Nature Nanotechnology, 3(6):352-355.
[51] Hong, J., Peralta-Videa, J.R., Rico, C., 2014. Evidence of translocation and physiological impacts of foliar applied CeO
2 nanoparticles on cucumber (
Cucumis sativus) plants.
Environmental Science & Technology, 48(8):4376-4385.
[52] Hou, W.C., Westerhoff, P., Posner, J.D., 2013. Biological accumulation of engineered nanomaterials: a review of current knowledge.
Environmental Science: Processes & Impacts, 15(1):103-122.
[53] Hummer, A.A., Rompel, A., 2013. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds
in vivo and
in vitro
.
Metallomics, 5(6):597-614.
[54] Iversen, T.G., Frerker, N., Sandvig, K., 2012. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism.
Journal of Nanobiotechnology, 10:33
[55] Johnson, R.L., Johnson, G.O., Nurmi, J.T., 2009. Natural organic matter enhanced mobility of nano zerovalent iron.
Environmental Science & Technology, 43(14):5455-5460.
[56] Judy, J.D., Unrine, J.M., Bertsch, P.M., 2011. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain.
Environmental Science & Technology, 45(2):776-781.
[57] Judy, J.D., Unrine, J.M., Rao, W., 2012. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating.
Environmental Science & Technology, 46(15):8467-8474.
[58] Judy, J.D., Unrine, J.M., Rao, W., 2012. Bioaccumulation of gold nanomaterials by
Manduca sexta through dietary uptake of surface contaminated plant tissue.
Environmental Science & Technology, 46(22):12672-12678.
[59] Kah, M., Beulke, S., Tiede, K., Hofmann, T., 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling.
Critical Reviews in Environmental Science and Technology, 43(16):1823-1867.
[60] Kelsey, J.W., White, J.C., 2013. Effect of C
60 fullerenes on the accumulation of weathered p,p′-DDE by plant and earthworm species under single and multispecies conditions.
Environmental Toxicology and Chemistry, 32(5):1117-1123.
[61] Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions.
Proceedings of the National Academy of Sciences of the United States of America, 108(3):1028-1033.
[62] Khodakovskaya, M.V., de Silva, K., Biris, A.S., 2012. Carbon nanotubes induce growth enhancement of tobacco cells.
ACS Nano, 6(3):2128-2135.
[63] Khodakovskaya, M.V., Kim, B.S., Kim, J.N., 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.
Small, 9(1):115-123.
[64] Khot, L.R., Sankaran, S., Maja, J.M., 2012. Applications of nanomaterials in agricultural production and crop protection: A review.
Crop Protection, 35:64-70.
[65] Klaine, S.J., Alvarez, P.J.J., Batley, G.E., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects.
Environmental Toxicology and Chemistry, 27(9):1825-1851.
[66] Klancnik, K., Drobne, D., Valant, J., Koce, J.D., 2011. Use of a modified
Allium test with nanoTiO
2
.
Ecotoxicology and Environmental Safety, 74(1):85-92.
[67] Kole, C., Kole, P., Randunu, K.M., 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (
Momordica charantia).
BMC Biotechnology, 13(1):37
[68] Kumari, A., Yadav, S.K., 2014. Nanotechnology in agri-food sector.
Critical Reviews in Food Science and Nutrition, 54(8):975-984.
[69] Kumari, M., Mukherjee, A., Chandrasekaran, N., 2009. Genotoxicity of silver nanoparticles in
Allium cepa
.
Science of The Total Environment, 407(19):5243-5246.
[70] Kumari, M., Khan, S.S., Pakrashi, S., 2011. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of
Allium cepa
.
Journal of Hazardous Materials, 190(1-3):613-621.
[71] Larue, C., Laurette, J., Herlin-Boime, N., 2012. Accumulation, translocation and impact of TiO
2 nanoparticles in wheat (
Triticum aestivum spp.): influence of diameter and crystal phase.
Science of The Total Environment, 431:197-208.
[72] Larue, C., Pinault, M., Czarny, B., 2012. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed.
Journal of Hazardous Materials, 227-228:155-163.
[73] Larue, C., Castillo-Michel, H., Sobanska, S., 2014. Foliar exposure of the crop
Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.
Journal of Hazardous Materials, 264:98-106.
[74] Lee, W.M., An, Y.J., Yoon, H., 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (
Phaseolus radiatus) and wheat (
Triticum aestivum): Plant agar test for water-insoluble nanoparticles.
Environmental Toxicology and Chemistry, 27(9):1915-1921.
[75] Lee, W.M., Kwak, J.I., An, Y.J., 2012. Effect of silver nanoparticles in crop plants
Phaseolus radiatus and
Sorghum bicolor: Media effect on phytotoxicity.
Chemosphere, 86(5):491-499.
[76] Li, Y., Chen, X., Gu, N., 2008. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
The Journal of Physical Chemistry B, 112(51):16647-16653.
[77] Lin, D.H., Xing, B.S., 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.
Environmental Pollution, 150(2):243-250.
[78] Lin, D.H., Xing, B.S., 2008. Root uptake and phytotoxicity of ZnO nanoparticles.
Environmental Science & Technology, 42(15):5580-5585.
[79] Lin, S.J., Reppert, J., Hu, Q., 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants.
Small, 5(10):1128-1132.
[80] Liu, Q., Zhao, Y., Wan, Y., 2010. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level.
ACS Nano, 4(10):5743-5748.
[81] Liu, Q.L., Chen, B., Wang, Q.L., 2009. Carbon nanotubes as molecular transporters for walled plant cells.
Nano Letters, 9(3):1007-1010.
[82] Long, S.P., Zhu, X.G., Naidu, S.L., 2006. Can improvement in photosynthesis increase crop yields?.
Plant, Cell & Environment, 29(3):315-330.
[83] Lopez-Moreno, M.L., De La Rosa, G., Hernandez-Viezcas, J.A., 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO
2 nanoparticles on soybean (
Glycine max) plants.
Environmental Science & Technology, 44(19):7315-7320.
[84] Lopez-Moreno, M.L., De La Rosa, G., Hernandez-Viezcas, J.A., 2010. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO
2 nanoparticles and assessment of their differential toxicity in four edible plant species.
Journal of Agricultural and Food Chemistry, 58(6):3689-3693.
[85] Ma, C., Chhikara, S., Xing, B., 2013. Physiological and molecular response of
Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure.
ACS Sustainable Chemistry & Engineering, 1(7):768-778.
[86] Ma, Y.H., He, X., Zhang, P., 2011. Phytotoxicity and biotransformation of La
2O
3 nanoparticles in a terrestrial plant cucumber (
Cucumis sativus).
Nanotoxicology, 5(4):743-753.
[87] Majumdar, S., Peralta-Videa, J.R., Castillo-Michel, H., 2012. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review.
Analytica Chimica Acta, 755(0):1-16.
[88] Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., 2013. Toxicity of engineered nanoparticles in the environment.
Analytical Chemistry, 85(6):3036-3049.
[89] Miralles, P., Johnson, E., Church, T.L., 2012. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake.
Journal of the Royal Society Interface, 9(77):3514-3527.
[90] Miralles, P., Church, T.L., Harris, A.T., 2012. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants.
Environmental Science & Technology, 46(17):9224-9239.
[91] Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance.
Trends in Plant Science, 7(9):405-410.
[92] Mueller, N.C., Nowack, B., 2008. Exposure modeling of engineered nanoparticles in the environment.
Environmental Science & Technology, 42(12):4447-4453.
[93] Musante, C., White, J.C., 2012. Toxicity of silver and copper to
Cucurbita pepo: differential effects of nano and bulk-size particles.
Environmental Toxicology, 27(9):510-517.
[94] National Research Council Committee, 2002.
National Research Council Committee on Toxicants Pathogens in Biosolids Applied to Land: Advancing Standards and Practices, National Academy Press,:
[95] Nedosekin, D.A., Khodakovskaya, M.V., Biris, A.S., 2011.
In vivo plant flow cytometry: a first proof-of-concept.
Cytometry Part A, 79A(10):855-865.
[96] Nel, A., Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel.
Science, 311(5761):622-627.
[97] Nel, A.E., Madler, L., Velegol, D., 2009. Understanding biophysicochemical interactions at the nano-bio interface.
Nature Materials, 8(7):543-557.
[98] Nichols, G., Byard, S., Bloxham, M.J., 2002. A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization.
Journal of Pharmaceutical Sciences, 91(10):2103-2109.
[99] Onelli, E., Prescianotto-Baschong, C., Caccianiga, M., 2008. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold.
Journal of Experimental Botany, 59(11):3051-3068.
[100] Oukarroum, A., Bras, S., Perreault, F., 2012. Inhibitory effects of silver nanoparticles in two green algae,
Chlorella vulgaris and
Dunaliella tertiolecta
.
Ecotoxicology and Environmental Safety, 78:80-85.
[101] Pan, B., Xing, B.S., 2012. Applications and implications of manufactured nanoparticles in soils: a review.
European Journal of Soil Science, 63(4):437-456.
[102] Park, B., Donaldson, K., Duffin, R., 2008. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive-a case study.
Inhalation Toxicology, 20(6):547-566.
[103] Parsons, J.G., Lopez, M.L., Gonzalez, C.M., 2010. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants.
Environmental Toxicology and Chemistry, 29(5):1146-1154.
[104] Petersen, E.J., Henry, T.B., Zhao, J., 2014. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements.
Environmental Science & Technology, 48(8):4226-4246.
[105] Priester, J.H., Ge, Y., Mielke, R.E., 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption.
Proceedings of the National Academy of Sciences of the United States of America, 109(37):E2451-E2456.
[106] Rico, C.M., Majumdar, S., Duarte-Gardea, M., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain.
Journal of Agricultural and Food Chemistry, 59(8):3485-3498.
[107] Rico, C.M., Morales, M.I., McCreary, R., 2013. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings.
Environmental Science & Technology, 47(24):14110-14118.
[108] Rico, C.M., Morales, M.I., Barrios, A.C., 2013. Effect of cerium oxide nanoparticles on the quality of rice (
Oryza sativa L.) grains.
Journal of Agricultural and Food Chemistry, 61(47):11278-11285.
[109] Rico, C.M., Hong, J., Morales, M.I., 2013. Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and
in vivo fluorescence imaging.
Environmental Science & Technology, 47(11):5635-5642.
[110] Sadiq, I.M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A., 2011. Studies on toxicity of aluminum oxide (Al
2O
3) nanoparticles to microalgae species:
Scenedesmus sp. and
Chlorella sp.
Journal of Nanoparticle Research, 13(8):3287-3299.
[111] Serag, M.F., Kaji, N., Habuchi, S., 2013. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers.
RSC Advances, 3(15):4856-4862.
[112] Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants.
Environmental Science & Technology, 43(24):9473-9479.
[113] Stark, W.J., 2011. Nanoparticles in biological systems.
Angewandte Chemie-International Edition, 50(6):1242-1258.
[114] Su, M.Y., Wu, X., Liu, C., 2007. Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO
2
.
Biological Trace Element Research, 119(2):183-192.
[115] Szakal, C., Roberts, S.M., Westerhoff, P., 2014. Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects.
ACS Nano, 8(4):3128-3135.
[116] Tepfer, M., Taylor, I.E.P., 1981. The permeability of plant-cell walls as measured by gel-filtration chromatography.
Science, 213(4509):761-763.
[117] Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., 2010. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (
Eisenia fetida).
Environmental Science & Technology, 44(21):8308-8313.
[118] Unrine, J.M., Shoults-Wilson, W.A., Zhurbich, O., 2012. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain.
Environmental Science & Technology, 46(17):9753-9760.
[119] Wang, H., Kou, X., Pei, Z., 2011. Physiological effects of magnetite (Fe
3O
4) nanoparticles on perennial ryegrass (
Lolium perenne L.) and pumpkin (
Cucurbita mixta) plants.
Nanotoxicology, 5(1):30-42.
[120] Wang, S., Kurepa, J., Smalle, J.A., 2011. Ultra-small TiO
2 nanoparticles disrupt microtubular networks in
Arabidopsis thaliana
.
Plant, Cell and Environment, 34(5):811-820.
[121] Wang, Z.Y., Xie, X.Y., Zhao, J., 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (
Zea mays L.).
Environmental Science & Technology, 46(8):4434-4441.
[122] Wild, E., Jones, K.C., 2009. Novel method for the direct visualization of
in vivo nanomaterials and chemical interactions in plants.
Environmental Science & Technology, 43(14):5290-5294.
[123] Yan, S.H., Zhao, L., Li, H., 2013. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression.
Journal of Hazardous Materials, 246:110-118.
[124] Yang, F., Liu, C., Gao, F., 2007. The improvement of spinach growth by nano-anatase TiO
2 treatment is related to nitrogen photoreduction.
Biological Trace Element Research, 119(1):77-88.
[125] Yang, X., Gondikas, A.P., Marinakos, S.M., 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in
Caenorhabditis elegans
.
Environmental Science & Technology, 46(2):1119-1127.
[126] Zhang, H.F., He, X.A., Zhang, Z.Y., 2011. Nano-CeO
2 exhibits adverse effects at environmental relevant concentrations.
Environmental Science & Technology, 45(8):3725-3730.
[127] Zhang, W.X., 2003. Nanoscale iron particles for environmental remediation: an overview.
Journal of Nanoparticle Research, 5(3-4):323-332.
[128] Zhang, Z.Y., He, X., Zhang, H.F., 2011. Uptake and distribution of ceria nanoparticles in cucumber plants.
Metallomics, 3(8):816-822.
[129] Zhao, L.J., Peng, B., Hernandez-Viezcas, J.A., 2012. Stress response and tolerance of
Zea mays to CeO
2 nanoparticles: cross talk among H
2O
2, heat shock protein, and lipid peroxidation.
ACS Nano, 6(11):9615-9622.
[130] Zhao, L.J., Peralta-Videa, J.R., Ren, M.H., 2012. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies.
Chemical Engineering Journal, 184:1-8.
[131] Zhao, L.J., Peralta-Videa, J.R., Rico, C.M., 2014. CeO
2 and ZnO nanoparticles change the nutritional qualities of cucumber (
Cucumis sativus).
Journal of Agricultural and Food Chemistry, 62(13):2752-2759.
[132] Zheng, L., Hong, F.S., Lu, S.P., 2005. Effect of nano-TiO
2 on strength of naturally and growth aged seeds of spinach.
Biological Trace Element Research, 104(1):83-91.
[133] Zhou, D., Jin, S., Li, L., 2011. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions.
Journal of Environmental Sciences, 23(11):1852-1857.
[134] Zhu, H., Han, J., Xiao, J.Q., 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants.
Journal of Environmental Monitoring, 10(6):713-717.
[135] Zhu, X.S., Wang, J.X., Zhang, X.Z., 2010. Trophic transfer of TiO
2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain.
Chemosphere, 79(9):928-933.
Open peer comments: Debate/Discuss/Question/Opinion
<1>