Full Text:   <7384>

Summary:  <6080>

CLC number: O33; O39

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-10-12

Cited: 4

Clicked: 18809

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin Qian

http://orcid.org/0000-0002-3597-5460

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.1 P.1-21

http://doi.org/10.1631/jzus.A1500125


Mechanics of dielectric elastomers: materials, structures, and devices


Author(s):  Feng-bo Zhu, Chun-li Zhang, Jin Qian, Wei-qiu Chen

Affiliation(s):  1Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jqian@zju.edu.cn

Key Words:  Artificial muscle, Smart material, Dielectric elastomer (DE), Electromechanical coupling, Constitutive law, Viscoelasticity, Electromechanical instability, Actuation


Share this article to: More |Next Article >>>

Feng-bo Zhu, Chun-li Zhang, Jin Qian, Wei-qiu Chen. Mechanics of dielectric elastomers: materials, structures, and devices[J]. Journal of Zhejiang University Science A, 2016, 17(1): 1-21.

@article{title="Mechanics of dielectric elastomers: materials, structures, and devices",
author="Feng-bo Zhu, Chun-li Zhang, Jin Qian, Wei-qiu Chen",
journal="Journal of Zhejiang University Science A",
volume="17",
number="1",
pages="1-21",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500125"
}

%0 Journal Article
%T Mechanics of dielectric elastomers: materials, structures, and devices
%A Feng-bo Zhu
%A Chun-li Zhang
%A Jin Qian
%A Wei-qiu Chen
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 1
%P 1-21
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500125

TY - JOUR
T1 - Mechanics of dielectric elastomers: materials, structures, and devices
A1 - Feng-bo Zhu
A1 - Chun-li Zhang
A1 - Jin Qian
A1 - Wei-qiu Chen
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 1
SP - 1
EP - 21
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500125


Abstract: 
Dielectric elastomers (DEs) respond to applied electric voltage with a surprisingly large deformation, showing a promising capability to generate actuation in mimicking natural muscles. A theoretical foundation of the mechanics of DEs is of crucial importance in designing DE-based structures and devices. In this review, we survey some recent theoretical and numerical efforts in exploring several aspects of electroactive materials, with emphases on the governing equations of electromechanical coupling, constitutive laws, viscoelastic behaviors, electromechanical instability as well as actuation applications. An overview of analytical models is provided based on the representative approach of non-equilibrium thermodynamics, with computational analyses being required in more generalized situations such as irregular shape, complex configuration, and time-dependent deformation. Theoretical efforts have been devoted to enhancing the working limits of DE actuators by avoiding electromechanical instability as well as electric breakdown, and pre-strains are shown to effectively avoid the two failure modes. These studies lay a solid foundation to facilitate the use of DE materials, structures, and devices in a wide range of applications such as biomedical devices, adaptive systems, robotics, energy harvesting, etc.

This review addresses a very important topic and provides a good summary of some recent theoretical and numerical efforts in understanding the mechanics of dielectric elastomers. In this review, the authors survey the theory and model development on dielectric elastomer actuators, including field theories, elastic and viscoelastic material laws, electromechanical instabilities, as well as some applications.

介电高弹体的材料、结构和器件力学

目的:介电高弹体是典型电敏性材料,在外加电场的作用下会产生大的变形,这一特点使其成为人工肌肉致动的理想材料,近年来引起研究者的广泛关注。本文着重介绍介电高弹体的基本力学理论和方法,旨在为相关材料、结构和器件的设计提供参考,也有助于不同专业背景的研究者了解并开展介电高弹体的相关研究。
概要:本文介绍了近年来关于介电高弹体力电耦合问题的一些理论和数值研究,重点包括力电耦合的控制方程、材料本构关系、粘弹性响应、力电失稳以及致动器设计等方面。文中讨论了基于非平衡热动力学的介电高弹体力学模型处理复杂构型或与时间相关变形时常被采用的数值方法,优化介电高弹体致动极限的力学设计,以及介电高弹体力电响应在典型致动器中的应用。

关键词:人工肌肉;智能材料;介电高弹体;力电耦合;本构关系;粘弹性;力电失稳;致动

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmed, S., Ounaies, Z., Frecker, M., 2014. Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Materials and Structures, 23(9):094003.

[2]Anderson, I.A., Gisby, T.A., McKay, T.G., et al., 2012. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. Journal of Applied Physics, 112(4):041101.

[3]Arora, S., Ghosh, T., Muth, J., 2007. Dielectric elastomer based prototype fiber actuators. Sensors and Actuators A: Physical, 136(1):321-328.

[4]Bar-Cohen, Y., 2004. Electroactive polymers (EAP) as actuators for potential future planetary mechanisms. 2004 NASA/DoD Conference on Evolvable Hardware, Proceedings, IEEE, p.309-317.

[5]Bauer, S., Bauer-Gogonea, S., Graz, I., et al., 2014. 25th Anniversary Article: A soft future: from robots and sensor skin to energy harvesters. Advanced Materials, 26(1):149-162.

[6]Boy, C.C., Vanella, F.A., Lattuca, M.E., et al., 2013. Effect of starvation on growth rate, muscle growth and energy density of puyen, Galaxias maculatus. Journal of Applied Ichthyology, 29(5):1001-1007.

[7]Boyce, M.C., Arruda, E.M., 2000. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 73(3):504-523.

[8]Brochu, P., Pei, Q., 2010. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 31(1):10-36.

[9]Bueschel, A., Klinkel, S., Wagner, W., 2011. A viscoelastic model for dielectric elastomers based on a continuum mechanical formulation and its finite element implementation. Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), No. 79761R.

[10]Bueschel, A., Klinkel, S., Wagner, W., 2013. Dielectric elastomers-numerical modeling of nonlinear visco-electroelasticity. International Journal for Numerical Methods in Engineering, 93(8):834-856.

[11]Carpi, F., de Rossi, D., 2004. Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 24(4):555-562.

[12]Carpi, F., Migliore, A., Serra, G., et al., 2005. Helical dielectric elastomer actuators. Smart Materials & Structures, 14(6):1210-1216.

[13]Carpi, F., Bauer, S., de Rossi, D., 2010. Stretching dielectric elastomer performance. Science, 330(6012):1759-1761.

[14]Chen, W.Q., 2014. The renaissance of continuum mechanics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(4):231-240.

[15]Chen, W.Q., Dai, H.H., 2012. Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mechanica Solida Sinica, 25(5):530-541.

[16]Chen, X., Mahadevan, L., Driks, A., et al., 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nature Nanotechnology, 9(2):137- 141.

[17]Davies, G.R., Yamwong, T., Voice, A.M., 2002. Electrostrictive response of an ideal polar rubber: comparison with experiment. Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), 4695:111-119.

[18]Dollhofer, J., Chiche, A., Muralidharan, V., et al., 2004. Surface energy effects for cavity growth and nucleation in an incompressible neo-Hookean material-modeling and experiment. International Journal of Solids and Structures, 41(22-23):6111-6127.

[19]Dorfmann, L., Ogden, R.W., 2014. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, USA, p.61-82.

[20]Duncan, P.N., Nguyen, T.V., Hui, E.E., 2013. Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 110(45):18104-18109.

[21]Dünki, S.J., Ko, Y.S., Nüesch, F.A., et al., 2015. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Advanced Functional Materials, 25(16):2467-2475.

[22]Follador, M., Tramacere, F., Mazzolai, B., 2014. Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration & Biomimetics, 9(4):046002.

[23]Foo, C.C., Cai, S., Koh, S.J.A., et al., 2012a. Model of dissipative dielectric elastomers. Journal of Applied Physics, 111(3):034102.

[24]Foo, C.C., Koh, S.J.A., Keplinger, C., et al., 2012b. Performance of dissipative dielectric elastomer generators. Journal of Applied Physics, 111(9):094107.

[25]Galantini, F., Bianchi, S., Castelvetro, V., et al., 2013. Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Materials and Structures, 22(5):055025.

[26]Gent, A.N., 1996. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69(1):59-61.

[27]Godaba, H., Foo, C.C., Zhang, Z.Q., et al., 2014. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Applied Physics Letters, 105(11):112901.

[28]Goulbourne, N.C., 2011. A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. International Journal of Solids and Structures, 48(7-8):1085-1091.

[29]Goulbourne, N.C., Mockensturm, E.M., Frecker, M.I., 2007. Electro-elastomers: large deformation analysis of silicone membranes. International Journal of Solids and Structures, 44(9):2609-2626.

[30]Graf, C., Hitzbleck, J., Feller, T., et al., 2014. Dielectric elastomer-based energy harvesting: material, generator design, and optimization. Journal of Intelligent Material Systems and Structures, 25(8):951-966.

[31]Ha, S.M., Yuan, W., Pei, Q.B., et al., 2006. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Advanced Materials, 18(7):887-891.

[32]Haus, H., Matysek, M., Moessinger, H., et al., 2013. Modelling and characterization of dielectric elastomer stack actuators. Smart Materials and Structures, 22(10):114009-114020.

[33]He, T., Zhao, X., Suo, Z., 2009. Dielectric elastomer membranes undergoing inhomogeneous deformation. Journal of Applied Physics, 106(8):083522.

[34]Hong, W., 2011. Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids, 59(3):637-650.

[35]Hu, Y., Suo, Z., 2012. Viscoelasticity and poroelasticity in elastomer gels. Acta Mechanica Solida Sinica, 25(5):441-458.

[36]Huang, J.S., Li, T.F., Foo, C.C., et al., 2012. Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters, 100(4):041911.

[37]Huang, J.S., Shian, S., Suo, Z.G., et al., 2013. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Advanced Functional Materials, 23(40):5056-5061.

[38]Huang, R., Suo, Z.G., 2012. Electromechanical phase transition in dielectric elastomers. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 468(2140):1014-1040.

[39]Hui, T.H., Zhou, Z.L., Qian, J., et al., 2014. Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Physical Review Letters, 113(11):118101.

[40]Jean-Mistral, C., Basrour, S., Chaillout, J.J., 2010. Modelling of dielectric polymers for energy scavenging applications. Smart Materials & Structures, 19(10):105006-105016.

[41]Jiang, H.Y., Qian, J., Lin, Y., et al., 2015. Aggregation dynamics of molecular bonds between compliant materials. Soft Matter, 11(14):2812-2820.

[42]Jordi, C., Michel, S., Fink, E., 2010. Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspiration & Biomimetics, 5(2):026007.

[43]Ju, L.N., Qian, J., Zhu, C., 2015. Transport regulation of two-dimensional receptor-ligand association. Biophysical Journal, 108(7):1773-1784.

[44]Jung, I., Xiao, J., Malyarchuk, V., et al., 2011. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America, 108(5):1788-1793.

[45]Kaal, W., Herold, S., 2013. Numerical investigations on dielectric stack actuators with perforated electrodes. Smart Materials and Structures, 22(10):104016.

[46]Keplinger, C., Li, T.F., Baumgartner, R., et al., 2012. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter, 8(2):285-288.

[47]Khan, K.A., Wafai, H., El Sayed, T., 2013. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Computational Mechanics, 52(2):345-360.

[48]Kofod, G., Kornbluh, R., Pelrine, R., et al., 2001. Actuation response of polyacrylate dielectric elastomers. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (EAPAD), 4329:141-147.

[49]Kofod, G., Sommer-Larsen, P., Kronbluh, R., et al., 2003. Actuation response of polyacrylate dielectric elastomers. Journal of Intelligent Material Systems and Structures, 14(12):787-793.

[50]Kofod, G., Wirges, W., Paajanen, M., et al., 2007. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 90(8):081916.

[51]Koh, S.J.A., Li, T.F., Zhou, J.X., et al., 2011. Mechanisms of large actuation strain in dielectric elastomers. Journal of Polymer Science Part B: Polymer Physics, 49(7):504-515.

[52]Kollosche, M., Zhu, J., Suo, Z.G., et al., 2012. Complex interplay of nonlinear processes in dielectric elastomers. Physical Review E, 85(5):976-986.

[53]Kornbluh, R.D., Pelrine, R., Pei, Q.B., et al., 2000. Ultrahigh strain response of field-actuated elastomeric polymers. Proc. SPIE 3987, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), 3987:51-64.

[54]Kornbluh, R., Pelrine, R., Pei, Q.B., et al., 2002. Electroelastomers: applications of dielectric elastomer transducers for actuation, generation and smart structures. Proc. SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, 4698:254-270.

[55]Kornbluh, R.D., Pelrine, R., Prahlad, H., et al., 2012. Dielectric elastomers: stretching the capabilities of energy harvesting. MRS Bulletin, 37(3):246-253.

[56]Kovacs, G., Duering, L., Michel, S., et al., 2009. Stacked dielectric elastomer actuator for tensile force transmission. Sensors and Actuators A: Physical, 155(2):299-307.

[57]Leng, J., Liu, L., Liu, Y., et al., 2009. Electromechanical stability of dielectric elastomer. Applied Physics Letters, 94(21):211901.

[58]Li, B., Zhou, J., Chen, H., 2011. Electromechanical stability in charge-controlled dielectric elastomer actuation. Applied Physics Letters, 99(24):244101.

[59]Li, B., Chen, H., Qiang, J., et al., 2012. A model for conditional polarization of the actuation enhancement of a dielectric elastomer. Soft Matter, 8(2):311-317.

[60]Li, B., Chen, H., Zhou, J., 2013. Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Composites Part A: Applied Science and Manufacturing, 52(5):55-61.

[61]Li, B., Zhang, J., Liu, L., et al., 2014. Modeling of dielectric elastomer as electromechanical resonator. Journal of Applied Physics, 116(12):124509.

[62]Li, J.R., Liu, L.W., Liu, Y.J., et al., 2014. Dielectric elastomer bending actuator: experiment and theoretical analysis. Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), No. 905639.

[63]Li, T.F., Qu, S.X., Yang, W., 2012a. Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation. Journal of Applied Physics, 112(3):034119.

[64]Li, T.F., Qu, S.X., Keplinger, C., et al., 2012b. Modeling guided design of dielectric elastomer generators and actuators. Proc. SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD), No. 83401X.

[65]Li, T.F., Keplinger, C., Baumgartner, R., et al., 2013. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 61(2):611-628.

[66]Li, T.F., Li, C., Mao, G.Y., et al., 2014a. Novel dielectric elastomer structures with electromechanical instability. Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), No. 90560N.

[67]Li, T.F., Zou, Z.N., Mao, G.Y., et al., 2014b. Electromechanical bistable behavior of a novel dielectric elastomer actuator. Journal of Applied Mechanics, 81(4):041019.

[68]Liang, X., Cai, S., 2015. Shape bifurcation of a spherical dielectric elastomer balloon under the actions of internal pressure and electric voltage. Journal of Applied Mechanics, 82(10):101002.

[69]Liu, H., Zhang, L., Yang, D., et al., 2013. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2. Soft Materials, 11(3):363-370.

[70]Liu, L., Liu, Y., Leng, J.S., et al., 2011. Electromechanical stability of compressible dielectric elastomer actuators. Smart Materials and Structures, 20(11):115015.

[71]Liu, L., Liu, Y., Yu, K., et al., 2014. Thermoelectromechanical stability of dielectric elastomers undergoing temperature variation. Mechanics of Materials, 72(5):33-45.

[72]Liu, Y., Liu, L., Zhang, Z., et al., 2010. Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. EPL (Europhysics Letters), 90(3):36004.

[73]Liu, Y., Gao, M., Mei, S., et al., 2013. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Applied Physics Letters, 103(6):064101.

[74]Lu, T.Q., Huang, J.H., Jordi, C., et al., 2012. Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter, 8(22):6167-6173.

[75]Lu, T.Q., Cai, S.Q., Wang, H.M., et al., 2013. Computational model of deformable lenses actuated by dielectric elastomers. Journal of Applied Physics, 114(10):104104.

[76]Lu, T.Q., Foo, C.C., Huang, J.H., et al., 2014. Highly deformable actuators made of dielectric elastomers clamped by rigid rings. Journal of Applied Physics, 115(18):184105.

[77]Maffli, L., Rosset, S., Shea, H.R., 2013. Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Materials and Structures, 22(10):104013.

[78]Magid, A., Law, D.J., 1985. Myofibrils bear most of the resting tension in frog skeletal-muscle. Science, 230(4731):1280-1282.

[79]Mao, G., Li, T., Zou, Z., et al., 2014. Prestretch effect on snap-through instability of short-length tubular elastomeric balloons under inflation. International Journal of Solids and Structures, 51(11-12):2109-2115.

[80]Mao, G.Y., Huang, X.Q., Diab, M., et al., 2015. Nucleation and propagation of voltage-driven wrinkles in an inflated dielectric elastomer balloon. Soft Matter, 11(33):6569-6575.

[81]Meijer, K., Rosenthal, M., Full, R.J., 2001. Muscle-like actuators? A comparison between three electroactive polymers. Proc. SPIE 4329, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (EAPAD), 4329:7-15.

[82]Mockensturm, E.M., Goulbourne, N., 2006. Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics, 41(3):388-395.

[83]Morrow, D.A., Donahue, T.L.H., Odegard, G.M., et al., 2010. Transversely isotropic tensile material properties of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials, 3(1):124-129.

[84]Nguyen, C.H., Alici, G., Mutlu, R., 2014. A compliant translational mechanism based on dielectric elastomer actuators. Journal of Mechanical Design, 136(6):061009.

[85]Niu, X.F., Leo, R., Chen, D., et al., 2013. Multilayer stack actuator made from new prestrain-free dielectric elastomers. Proc. SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD), No. 86871M.

[86]O’Halloran, A., O’Malley, F., McHugh, P., 2008. A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 104(7):071101.

[87]Park, H.S., Nguyen, T.D., 2013. Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter, 9(4):1031-1042.

[88]Park, H.S., Suo, Z., Zhou, J., et al., 2012. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. International Journal of Solids and Structures, 49(15-16):2187-2194.

[89]Lochmatter, P., Kovacs, G., Wissler, M., 2007. Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sensors and Actuators A: Physical, 135(2):748-757.

[90]Pelrine, R., Kornbluh, R., Pei, Q.B., et al., 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454):836-839.

[91]Pelrine, R.E., Kornbluh, R.D., Joseph, J.P., 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 64(1):77-85.

[92]Plante, J.S., Dubowsky, S., 2006. Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 43(25-26):7727-7751.

[93]Proulx, S., Chouinard, P., Bigue, J.P.L., et al., 2011. Design of a MRI-compatible dielectric elastomer powered jet valve. Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), No. 79762C.

[94]Qian, J., Liu, H., Lin, Y., et al., 2013. A mechanochemical model of cell reorientation on substrates under cyclic stretch. PLoS ONE, 8(6):e65864.

[95]Qu, S.X., Suo, Z.G., 2012. A finite element method for dielectric elastomer transducers. Acta Mechanica Solida Sinica, 25(5):459-466.

[96]Qu, S.X., Li, K., Li, T.F., et al., 2012. Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mechanica Solida Sinica, 25(5):542-549.

[97]Reese, S., Govindjee, S., 1998. A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures, 35(26-27):3455-3482.

[98]Reffaee, A.S.A., El Nashar, D.E., Abd-El-Messieh, S.L., et al., 2009. Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Materials & Design, 30(9):3760-3769.

[99]Rosset, S., Niklaus, M., Dubois, P., et al., 2009. Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Advanced Functional Materials, 19(3):470-478.

[100]Sarangapani, K.K., Qian, J., Chen, W.Q., et al., 2011. Regulation of catch bonds by rate of force application. Journal of Biological Chemistry, 286(37):32749-32761.

[101]Seki, M., Sato, K., Haga, Y., et al., 1995. Electrical-properties of acrylic elastomer-LiClO4 complex as a polymeric solid-electrolyte. Macromolecular Chemistry and Physics, 196(6):1813-1820.

[102]Shankar, R., Ghosh, T.K., Spontak, R.J., 2007. Dielectric elastomers as next-generation polymeric actuators. Soft Matter, 3(9):1116-1129.

[103]Sheng, J., Chen, H., Qiang, J., et al., 2012. Thermal, mechanical, and dielectric properties of a dielectric elastomer for actuator applications. Journal of Macromolecular Science, Part B: Physics, 51(10):2093-2104.

[104]Sheng, J., Chen, H., Liu, L., et al., 2013. Dynamic electromechanical performance of viscoelastic dielectric elastomers. Journal of Applied Physics, 114(13):134101.

[105]Suo, Z.G., 2010. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6):549-578.

[106]Suo, Z.G., 2012. Mechanics of stretchable electronics and soft machines. MRS Bulletin, 37(3):218-225.

[107]Suo, Z.G., Zhu, J., 2009. Dielectric elastomers of interpenetrating networks. Applied Physics Letters, 95(23):232909.

[108]Suo, Z.G., Zhao, X., Greene, W.H., 2008. A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 56(2):467-486.

[109]Tian, L., Tevet-Deree, L., deBotton, G., et al., 2012. Dielectric elastomer composites. Journal of the Mechanics and Physics of Solids, 60(1):181-198.

[110]Tian, M., Yan, B., Yao, Y., et al., 2014. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity. Journal of Materials Chemistry C, 2(39):8388-8397.

[111]Tutcuoglu, A., Majidi, C., 2014. Energy harvesting with stacked dielectric elastomer transducers: nonlinear theory, optimization, and linearized scaling law. Applied Physics Letters, 105(24):214905.

[112]van Loocke, M., Lyons, C.G., Simms, C.K., 2008. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. Journal of Biomechanics, 41(7):1555-1566.

[113]van Loocke, M., Simms, C.K., Lyons, C.G., 2009. Viscoelastic properties of passive skeletal muscle in compression-cyclic behaviour. Journal of Biomechanics, 42(8):1038-1048.

[114]Vertechy, R., Frisoli, A., Bergamasco, M., et al., 2012. Modeling and experimental validation of buckling dielectric elastomer actuators. Smart Materials and Structures, 21(9):094005.

[115]Vu-Cong, T., Jean-Mistral, C., Sylvestre, A., 2013. New operating limits for applications with electroactive elastomer: effect of the drift of the dielectric permittivity and the electrical breakdown. Proc. SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD), No. 86871S.

[116]Wang, H., Cai, S., Carpi, F., et al., 2012. Computational model of hydrostatically coupled dielectric elastomer actuators. Journal of Applied Mechanics, 79(3):031008.

[117]Wang, H., Lei, M., Cai, S., 2013. Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads. Journal of Applied Physics, 113(21):213508.

[118]Wang, J., Nguyen, T.D., Park, H.S., 2014. Electrostatically driven creep in viscoelastic dielectric elastomers. Journal of Applied Mechanics, 81(5):1847-1858.

[119]Wang, Y., Zhou, J.X., Wu, X.H., et al., 2013. Energy diagrams of dielectric elastomer generators under different types of deformation. Chinese Physics Letters, 30(6):66103.

[120]Wang, Y., Chen, B.H., Bai, Y.Y., et al., 2014a. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Applied Physics Letters, 104(6):064101.

[121]Wang, Y., Zhou, J.W., Sun, W.J., et al., 2014b. Mechanics of dielectric elastomer-activated deformable transmission grating. Smart Materials and Structures, 23(9):095010.

[122]Wang, Y.Q., Xue, H.H., Chen, H.L., et al., 2013. A dynamic visco-hyperelastic model of dielectric elastomers and their energy dissipation characteristics. Applied Physics A-Materials Science & Processing, 112(2):339-347.

[123]Wissler, M., Mazza, E., 2005. Modeling and simulation of dielectric elastomer actuators. Smart Materials & Structures, 14(6):1396-1402.

[124]Wu, X., Sun, W., Li, B., et al., 2012. Homogeneous large deformation analysis of a dielectric elastomer peristaltic actuator. Science China-Technological Sciences, 55(2):537-541.

[125]Zhang, C., Chen, H.L., Liu, L., et al., 2015. Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration. Journal of Physics D: Applied Physics, 48(24):245502.

[126]Zhang, J., Chen, H., Li, B., 2014a. A method of tuning viscoelastic creep in charge-controlled dielectric elastomer actuation. EPL (Europhysics Letters), 108(5):57002.

[127]Zhang, J., Chen, H., Sheng, J., et al., 2014b. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load. Applied Physics A-Materials Science & Processing, 116(1):59-67.

[128]Zhang, W.L., Lin, Y., Qian, J., et al., 2013. Tuning molecular adhesion via material anisotropy. Advanced Functional Materials, 23(37):4729-4738.

[129]Zhang, X.Q., Lowe, C., Wissler, M., et al., 2005. Dielectric elastomers in actuator technology. Advanced Engineering Materials, 7(5):361-367.

[130]Zhang, Z., Liu, L.W., Liu, Y.J., et al., 2012. Effect of mechanical force field on the electromechanical stability of dielectric elastomers. Science China-Physics Mechanics & Astronomy, 55(1):94-101.

[131]Zhao, X.H., Suo, Z.G., 2007. Method to analyze electromechanical stability of dielectric elastomers. Applied Physics Letters, 91(6):061921.

[132]Zhao, X.H., Wang, Q.M., 2014. Harnessing large deformation and instabilities of soft dielectrics: theory, experiment, and application. Applied Physics Reviews, 1(2):021304.

[133]Zhao, X.H., Hong, W., Suo, Z.G., 2007. Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 76(13):134113.

[134]Zhao, X.H., Koh, S.J.A., Suo, Z.G., 2011. Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 3(2):203-217.

[135]Zhou, J.Y., Jiang, L.Y., Khayat, R.E., 2013. Failure analysis of a dielectric elastomer plate actuator considering boundary constraints. Journal of Intelligent Material Systems and Structures, 24(14):1667-1674.

[136]Zhou, J.Y., Jiang, L.Y., Khayat, R.E., 2014a. Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints. Smart Materials and Structures, 23(4):045028.

[137]Zhou, J.Y., Jiang, L.Y., Khayat, R.E., 2014b. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. Journal of Applied Physics, 115(12):24106.

[138]Zhu, J., Stoyanov, H., Kofod, G., et al., 2010. Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics, 108(7):074113.

[139]Zou, Z., Li, T., Qu, S., et al., 2014. Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes. Journal of Applied Mechanics, 81(3):031016.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE