Full Text:   <3405>

Summary:  <2034>

CLC number: TL36

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-10-10

Cited: 0

Clicked: 4529

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ji-en Ma

http://orcid.org/0000-0001-6970-3634

Yong Wang

http://orcid.org/0000-0003-1870-9547

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.11 P.911-922

http://doi.org/10.1631/jzus.A1600035


Generation III pressurized water reactors and China’s nuclear power


Author(s):  Yong Wang, Ji-en Ma, You-tong Fang

Affiliation(s):  Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233, China; more

Corresponding email(s):   majien@zju.edu.cn

Key Words:  Generation III (GIII) pressurized water reactor (PWR), Performance, Safety, Economy, Nuclear power


Share this article to: More <<< Previous Article|

Yong Wang, Ji-en Ma, You-tong Fang. Generation III pressurized water reactors and China’s nuclear power[J]. Journal of Zhejiang University Science A, 2016, 17(11): 911-922.

@article{title="Generation III pressurized water reactors and China’s nuclear power",
author="Yong Wang, Ji-en Ma, You-tong Fang",
journal="Journal of Zhejiang University Science A",
volume="17",
number="11",
pages="911-922",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600035"
}

%0 Journal Article
%T Generation III pressurized water reactors and China’s nuclear power
%A Yong Wang
%A Ji-en Ma
%A You-tong Fang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 11
%P 911-922
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600035

TY - JOUR
T1 - Generation III pressurized water reactors and China’s nuclear power
A1 - Yong Wang
A1 - Ji-en Ma
A1 - You-tong Fang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 11
SP - 911
EP - 922
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600035


Abstract: 
The design philosophy, overall performance, safety, and economy of three typical generation III (GIII) pressurized water reactors, EPR, AES2006, and CAP1400, are analyzed comprehensively in this paper. Based on comparison with and the lessons learned from the Fukushima nuclear accident, we forecast a future reactor for China’s commercial nuclear power plant. Moreover, we put forward important technological fields of GIII nuclear power plants to which attention should be paid, including the enhancement of defense in depth, defense against extreme external events, severe accident mitigation, design simplification and standardization, improvement in economic competitiveness, load following capability, and adaptation to climate change.

世界三代压水堆主要机型技术分析

概要:本文针对目前主要的第三代压水堆机型EPR、AES2006以及CAP1400,从核电厂设计理念,综合性能、安全性和经济性等方面进行对比分析。在此基础上,结合福岛核事故,探讨中国商用核电未来的技术发展方向。通过对EPR、AES2006以及CAP1400的对比分析发现,尽管它们采用了不同的设计理念和技术方式,但作为目前第三代商用压水堆的代表机型,其目标都在于提高核电厂的整体性能、安全性能和经济性,从而在提高安全性的前提下,强化其相比于其他发电方式的竞争力,获得政府、公众和业主的支持。第三代压水堆技术的主要努力方向在于:在安全方面,进一步强化纵深防御体系,将设计加强工况(包括全厂断电、商用飞机撞击和预期未能停堆的瞬态等)纳入设计考虑的范畴;设置预防和缓解严重事故的措施;考虑极端外部事件设防(包括地震和洪水等)。再者,对非能动安全与能动安全两者之间的关系定位、相互衔接进行优化设置,从而更好的保障核安全。此外,严重事故下设备和仪表的可用性成为福岛核事故后需要特别关注的问题。从经济性的角度讲,加强设计简化和标准化,及时将EPR、AES2006以及CAP1400的首台组的建造经验反馈到后续机组,改进可建造性和模块化从而确保经济性和缩短建造周期。从运行的角度讲,考虑国内核电装机容量的增加、较长的设计寿命以及其他可再生能源的并网,核电设计需强化负荷跟踪的能力。长期来看,需要考虑可能的气候变化,从而确保核电站(沿海和内陆)具有较强的应对极端气候以及较高环境温度和冷却水升温的能力。
关键词:第三代压水堆技术;性能;安全性;经济性;核电

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Areva, 2014. Status Report 78–The Evolutionary Power Reactor (EPR). Available from https://aris.iaea.org/PDF/EPR.pdf [Accessed on Dec. 20, 2015].

[2]ASME (American Society of Mechanical Engineers), 2012. Forging a New Nuclear Safety Construct. ASME, USA.

[3]Bittermann, D., Krugmann, U., Azarian, G., 2001. EPR accident scenarios and provisions. Nuclear Engineering and Design, 207(1):49-57.

[4]Bonhomme, N., 1999. Systems organization for the European pressurized water reactor (EPR). Nuclear Engineering and Design, 187(1):71-78.

[5]Bouteille, F., Azarian, G., Bittermann, D., et al., 2006. The EPR overall approach for severe accident mitigation. Nuclear Engineering and Design, 236(14-16):1464-1470.

[6]EPRI (Electric Power Research Institute), 2013. Utility Requirement Document, 12th Revision. EPRI, USA.

[7]EUR Organization, 2001. The European Utility Requirement Document (EUR), Revision C. EUR Organization.

[8]Fischer, M., 2004. The severe accident mitigation concept and the design measures for core melt retention of the European pressurized reactor (EPR). Nuclear Engineering and Design, 230(1-3):169-180.

[9]Fischer, M., Herbst, O., Schmidt, H., 2005. Demonstration of the heat removing capabilities of the EPR core catcher. Nuclear Engineering and Design, 235(10-12):1189-1200.

[10]GIF (Generation IV International Forum), 2014. Available from https://www.gen-4.org [Accessed on Jan. 3, 2016].

[11]IAEA (International Atomic Energy Agency), 2009. Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants. IAEA, Austria.

[12]IAEA (International Atomic Energy Agency), 2012. SSR-2/1, Safety of Nuclear Power Plants: Design Specific Safety Requirement. IAEA, Austria.

[13]IAEA (International Atomic Energy Agency), 2015. Available from http://www.iaea.org/pris/ [Accessed on Jan. 10, 2016].

[14]Juhn, P.E., Kupitz, J., Cleveland, J., 2000. IAEA activities on passive safety systems and overview of international development. Nuclear Engineering and Design, 201(1):41-59.

[15]Knudson, D.L., Rempe, J.L., Condie, K.G., et al., 2004. Late-phase melt conditions affecting the potential for in-vessel retention in high power reactors. Nuclear Engineering and Design, 230(1-3):133-150.

[16]Kolchinsky, D., 2013. AES 2006: New Design with VVER Reactor and INPRO Methodology. INPRO Forum, Vienna, Austria.

[17]Krepper, E., Beyer, M., 2010. Experimental and numerical investigations of natural circulation phenomena in passive safety systems for decay heat removal in large pools. Nuclear Engineering and Design, 240(10):3170-3177.

[18]Mayousse, M., 2013. Drivers and approach for the design of the EPR™ reactor. IAEA, Technical Meeting on Technology Assessment for Embarking Countries, Vienna, Austria.

[19]MEP (Ministry of Environmental Protection of the People’s Republic of China), 2012. “Twelfth Five-Year Plan” and “2020 Vision of Nuclear Safety and Radioactive Pollution Prevention and Mitigation”. MEP, Beijing, China (in Chinese).

[20]Mousavian, S.K., D’Auria, F., Salehi, M.A., 2004. Analysis of natural circulation phenomena in VVER-1000. Nuclear Engineering and Design, 229(1):25-46.

[21]OECD (Organisation for Economic Co-operation and Development), 2014. Nuclear Roadmap. OECD.

[22]Rempe, J.L., Knudson, D.L., Condie, K.G., et al., 2002. In-vessel Retention Strategy for High Power Reactors. Report No. INEEL/EXT-02-01291. Annual Report.

[23]Rosatom, 2014. Status Report 108–VVER-1200 (V-491). Available from https://aris.iaea.org/PDF/VVER-1200(V-491).pdf [Accessed on Jan. 4, 2016].

[24]SNERDI (Shanghai Nuclear Engineering Research and Design Institute), 2013. General Report of CAP1400 Preliminary Design. SNERDI, China (in Chinese).

[25]Steinwarz, W., Alemberti, A., Häfner, W., et al., 2001. Investigations on the phenomenology of ex-vessel core melt behavior. Nuclear Engineering and Design, 209(1-3):139-146.

[26]Tujikura, Y., Oshibe, T., Kijima, K., et al., 2000. Development of passive safety systems for next generation PWR in Japan. Nuclear Engineering and Design, 201(1):61-70.

[27]Westinghouse, 2014. Status Report 81–Advanced Passive PWR (AP 1000). Available from https://aris.iaea.org/ PDF/AP1000.pdf [Accessed on Dec. 20, 2015].

[28]Wittmaack, R., 2002. Simulation of free-surface flows with heat transfer and phase transitions and application to corium spreading in the EPR. Journal of Nuclear Technology, 137(3):194-212.

[29]Zang, X.N., Guo, W.J., Huang, B., et al., 2001. Transient analyses of the passive residual heat removal system. Nuclear Engineering and Design, 206(1):105-111.

[30]Zhang, Y.P., Qiu, S.Z., Su, G.H., et al., 2012. Design and transient analyses of emergency passive residual heat removal system of CPR1000. Nuclear Engineering and Design, 242:247-256.

[31]Zio, E., Di Maio, F., Tong, J., 2010. Safety margins confidence estimation for a passive residual heat removal system. Reliability Engineering & System Safety, 95(8):828-836.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE