Full Text:   <3073>

Summary:  <1966>

CLC number: TK09

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-12-15

Cited: 1

Clicked: 5131

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ran Tao

https://orcid.org/0000-0003-0073-7339

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.1 P.34-44

http://doi.org/10.1631/jzus.A1700156


Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation


Author(s):  Ran Tao, Meng-meng Yang, Shui-qing Li

Affiliation(s):  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

Corresponding email(s):   lishuiqing@mail.tsinghua.edu.cn

Key Words:  Filtration, Fiber arrays, Staggered arrays, Discrete element method (DEM)


Ran Tao, Meng-meng Yang, Shui-qing Li. Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation[J]. Journal of Zhejiang University Science A, 2018, 19(1): 34-44.

@article{title="Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation",
author="Ran Tao, Meng-meng Yang, Shui-qing Li",
journal="Journal of Zhejiang University Science A",
volume="19",
number="1",
pages="34-44",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700156"
}

%0 Journal Article
%T Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation
%A Ran Tao
%A Meng-meng Yang
%A Shui-qing Li
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 1
%P 34-44
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700156

TY - JOUR
T1 - Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation
A1 - Ran Tao
A1 - Meng-meng Yang
A1 - Shui-qing Li
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 1
SP - 34
EP - 44
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700156


Abstract: 
A 3D multi-time scale discrete element method-computational fluid dynamic (DEM-CFD) coupling approach was applied to investigate the filtration of micron-sized particles by different types of fiber arrays. Both the pressure drop and the filtration efficiency were examined to indicate the filtration performance of the fiber arrays. Fibers that were uniformly arrayed in a parallel or staggered manner were compared. Results showed that the staggered array showed a better performance than the parallel array in terms of both pressure drop and filtration efficiency. Further, we compared the performance of different staggered arrays, i.e. a regular case, one densified in the front layers and another densified in the back layers. The front densified array was found to enter the clogging and cake filtration stage in the shortest time, leading to the highest filtration efficiency, but the highest pressure drop. The back densified array still achieved a much higher filtration efficiency, despite a much lower pressure drop comparable to that of the regular array. The results suggest that the two kinds of densified arrays may be suited for different purposes, e.g. baghouse filters or breathing masks.

离散元-计算流体动力学耦合方法模拟多纤维阵列过滤微米级颗粒

目的:微米细颗粒在不同纤维排列所组成的滤料中的沉积和穿透行为仍然缺少研究.本文通过离散元-计算流体动力学耦合(DEM-CFD)双向耦合方法,研究前加密、后加密以及规则错列阵列纤维在过滤压降和捕捉效率方面的特性.
创新点:1. 使用DEM-CFD流固双向耦合方法,建立了适用于多纤维阵列过滤微米颗粒的数值模拟方法;2. 得到并对比了不同排列形式的过滤压降和捕捉效率.
方法:1. 通过数值模拟,得到顺列和错列排布纤维的过滤压降及捕捉效率(图2和3、表2);2. 通过数值模拟,分析前加密、后加密错列排布纤维与规则错列排列纤维的优劣(图6和7),并得出颗粒在滤料中的沉积分布(图8).
结论:1. 错列纤维比顺列纤维提前进入堵塞期,在沉积相同颗粒数时具有更低的压降,且在清洁滤料期具有更高的捕捉效率;2. 前加密错列排布比后加密错列排布更早进入堵塞期,且总体穿透颗粒数量更少;3. 前加密错列排布适用于工业滤料,而后加密错列排布适用于一次性个人防护用品.

关键词:滤料过滤;纤维阵列;错列;离散元方法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Benyahia S, Syamlal M, O’Brien TJ, 2006. Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technology, 162(2):166-174.

[2]Chen S, Li S, Yang M, 2015. Sticking/Rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technology, 274: 431-440.

[3]Chen S, Liu W, Li S, 2016a. Effect of long-range electrostatic repulsion on pore clogging during microfiltration. Physical Review E, 94(6):063108.

[4]Chen S, Li S, Liu W, et al., 2016b. Effect of long-range repulsive coulomb interactions on packing structure of adhesive particles. Soft Matter, 12(6):1836-1846.

[5]Dittler A, Gutmann B, Lichtenberger R, et al., 1998. Optical in situ measurement of dust cake thickness distributions on rigid filter media for gas cleaning. Powder Technology, 99(2):177-184.

[6]Dunnett SJ, Clement CF, 2006. A numerical study of the effects of loading from diffusive deposition on the efficiency of fibrous filters. Journal of Aerosol Science, 37(9):1116-1139.

[7]Dunnett SJ, Clement CF, 2012. Numerical investigation into the loading behaviour of filters operating in the diffusional and interception deposition regimes. Journal of Aerosol Science, 53:85-99.

[8]Flagan CR, Seinfel HJ, 1988. Fundamentals of Air Pollution Engineering. Prentice Hall, Englewood Cliffs, New Jersey, USA, p.433-455.

[9]Garg R, Galvin J, Li T, et al., 2012. Open-source MFIX-DEM software for gas–solids flows: part I—verification studies. Powder Technology, 220:122-137.

[10]Hosseini SA, Tafreshi HV, 2010. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technology, 201(2):153-160.

[11]Johnson KL, Kendall K, Roberts AD, 1971. Surface energy and the contact of elastic solids. Proceedings of Royal Society London A: Mathematical, Physical and Engineering Sciences, 324(1558):301-313.

[12]Kanaoka C, Emi H, Myojo T, 1980. Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load. Journal of Aerosol Science, 11(4):383-385.

[13]Karadimos A, Ocone R, 2003. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Technology, 137(3):109-119.

[14]Kasper G, Schollmeier S, Meyer J, et al., 2009. The collection efficiency of a particle-loaded single filter fiber. Journal of Aerosol Science, 40(12):993-1009.

[15]Kasper G, Schollmeier S, Meyer J, 2010. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. Journal of Aerosol Science, 41(12):1167-1182.

[16]Kolakaluri R, Murphy E, Subramaniam S, et al., 2015. Filtration model for polydisperse aerosols in gas-solid flow using granule-resolved direct numerical simulation. AIChE Journal, 61(11):3594-3606.

[17]LaMarche CQ, Miller AW, Liu P, et al., 2016. Linking micro-scale predictions of capillary forces to macro-scale fluidization experiments in humid environments. AIChE Journal, 62(10):3585-3597.

[18]Li SQ, Marshall JS, 2007. Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. Journal of Aerosol Science, 38(10):1031-1046.

[19]Li SQ, Marshall JS, Liu GQ, et al., 2011. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Progress in Energy and Combustion Science, 37(6):633-668.

[20]Li T, Garg R, Galvin J, et al., 2012. Open-source MFIX-DEM software for gas-solids flows: part II—validation studies. Powder Technology, 220:138-150.

[21]Liu D, van Wachem BGM, Mudde RF, et al., 2016. An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization. AIChE Journal, 62(7):2259-2270.

[22]Liu W, Li S, Baule A, et al., 2015. Adhesive loose packings of small dry particles. Soft Matter, 11(32):6492-6498.

[23]Liu ZG, Wang PK, 1997. Pressure drop and interception efficiency of multifiber filters. Aerosol Science and Technology, 26(4):313-325.

[24]Luding S, 2008. Cohesive, frictional powders: contact models for tension. Granular Matter, 10(4):235-246.

[25]Marshall JS, 2009. Discrete-element modeling of particulate aerosol flows. Journal of Computational Physics, 228(5):1541-1561.

[26]Marshall JS, Li S, 2014. Adhesive Particle Flow. Cambridge University Press, New York, USA, p.86-99.

[27]Maze B, Vahedi Tafreshi H, Wang Q, et al., 2007. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. Journal of Aerosol Science, 38(5):550-571.

[28]Myojo T, Kanaoka C, Emi H, 1984. Experimental observation of collection efficiency of a dust-loaded fiber. Journal of Aerosol Science, 15(4):483-489.

[29]Novick VJ, Higgins PJ, Dierkschiede B, et al., 1990. Efficiency and mass loading characteristics of a typical HEPA filter media material. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference, 2:782-798.

[30]Roussel N, Nguyen TLH, Coussot P, 2007. General probabilistic approach to the filtration process. Physical Review Letters, 98(11):114502.

[31]Schiller S, Schmid H, 2015. Highly efficient filtration of ultrafine dust in baghouse filters using precoat materials. Powder Technology, 279:96-105.

[32]Tamadondar MR, Rasmuson A, Thalberg K, et al., 2017. Numerical modeling of adhesive particle mixing. AIChE Journal, 63(7):2599-2609.

[33]Thomas D, Contal P, Renaudin V, et al., 1999. Modelling pressure drop in HEPA filters during dynamic filtration. Journal of Aerosol Science, 30(2):235-246.

[34]Thomas D, Penicot P, Contal P, et al., 2001. Clogging of fibrous filters by solid aerosol particles: experimental and modelling study. Chemical Engineering Science, 56(11):3549-3561.

[35]Tien C, Teoh SK, Tan RBH, 2001. Cake filtration analysis— the effect of the relationship between the pore liquid pressure and the cake compressive stress. Chemical Engineering Science, 56(18):5361-5369.

[36]Tomas J, 2007. Adhesion of ultrafine particles—a micromechanical approach. Chemical Engineering Science, 62(7):1997-2010.

[37]Wang H, Zhao H, Guo Z, et al., 2013. Lattice Boltzmann method for simulations of gas-particle flows over a backward-facing step. Journal of Computational Physics, 239:57-71.

[38]Wang J, Pui DYH, 2009. Filtration of aerosol particles by elliptical fibers: a numerical study. Journal of Nanoparticle Research, 11(1):185-196.

[39]Yang M, Li S, Yao Q, 2013. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technology, 248:44-53.

[40]Zhu HP, Zhou ZY, Yang RY, et al., 2008. Discrete particle simulation of particulate systems: a review of major applications and findings. Chemical Engineering Science, 63(23):5728-5770.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE