CLC number: TN823
On-line Access: 2025-05-06
Received: 2023-10-31
Revision Accepted: 2024-03-20
Crosschecked: 2025-05-06
Cited: 0
Clicked: 1275
Citations: Bibtex RefMan EndNote GB/T7714
Xiaojun ZOU, Guangming WANG, Yawei WANG, Wei SONG, Hang ZHU, Ming TAN, Xuguang XU, Guoqin KANG, Binfeng ZONG. A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(4): 652-670.
@article{title="A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays",
author="Xiaojun ZOU, Guangming WANG, Yawei WANG, Wei SONG, Hang ZHU, Ming TAN, Xuguang XU, Guoqin KANG, Binfeng ZONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="4",
pages="652-670",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300742"
}
%0 Journal Article
%T A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays
%A Xiaojun ZOU
%A Guangming WANG
%A Yawei WANG
%A Wei SONG
%A Hang ZHU
%A Ming TAN
%A Xuguang XU
%A Guoqin KANG
%A Binfeng ZONG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 4
%P 652-670
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300742
TY - JOUR
T1 - A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays
A1 - Xiaojun ZOU
A1 - Guangming WANG
A1 - Yawei WANG
A1 - Wei SONG
A1 - Hang ZHU
A1 - Ming TAN
A1 - Xuguang XU
A1 - Guoqin KANG
A1 - Binfeng ZONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 4
SP - 652
EP - 670
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300742
Abstract: A novel approach to widening the active reflection coefficient (ARC) bandwidth of an antenna array, employing a parasitic coupling network (PCN), is investigated in this article. Different from traditional tightly coupled arrays adopting space structures for enhancing the coupling in balanced-excitation antennas, a PCN derived from rigorous formulas is employed in the feeding lines of unbalanced-excitation ones. Based on network analysis, the mutual coupling utilization condition for an (M×N)-element antenna array is initially deduced, and the PCN is implemented. Then, the PCNs are realized by introducing a parasitic element and a coupling network between the two-element H-plane and E-plane dual-layer coupled microstrip antenna arrays, resulting in 10.9% and 30.8% bandwidth enhancements compared with the original arrays, respectively. Moreover, the PCNs are further expanded to multielement antenna arrays, including three- and five-element one-dimensional and 8×2 two-dimensional arrays, exhibiting approximately 40% overlapped ARC bandwidths with normal radiation patterns, steady gains, and applicable scanning characteristics. The results indicate its potential application in large-scale wideband arrays.
[1]Allen JL, Diamond BL, 1966. Mutual Coupling in Array Antennas. Technical Report No. 424 (ESD-TR-66-443), LaboratoryLincoln, MIT, Lexington, MA, USA.
[2]Alwan EA, Sertel K, Volakis JL, 2012. A simple equivalent circuit model for ultrawideband coupled arrays. IEEE Antenn Wirel Propag Lett, 11:117-120.
[3]Bait-Suwailam MM, Boybay MS, Ramahi OM, 2010. Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications. IEEE Trans Antenn Propag, 58(9):2894-2902.
[4]Chen YK, Zhou WY, Yang SW, 2021. Design of a low-profile and low scattering wideband planar phased antenna array. IEEE Trans Antenn Propag, 69(12):8973-8978.
[5]Ghadimi A, Nayyeri V, Khanjarian M, et al., 2020. A systematic approach for mutual coupling reduction between microstrip antennas using pixelization and binary optimization. IEEE Antenn Wirel Propag Lett, 19(12):2048-2052.
[6]Guo JY, Liu F, Jing GD, et al., 2020. Mutual coupling reduction of multiple antenna systems. Front Inform Technol Electron Eng, 21(3):366-376.
[7]Holland SS, Vouvakis MN, 2012. The planar ultrawideband modular antenna (PUMA) array. IEEE Trans Antenn Propag, 60(1):130-140.
[8]Kahn W, 1969. Active reflection coefficient and element efficiency in arbitrary antenna arrays. IEEE Trans Antenn Propag, 17(5):653-654.
[9]Kumar C, Pasha MI, Guha D, 2017. Defected ground structure integrated microstrip array antenna for improved radiation properties. IEEE Antenn Wirel Propag Lett, 16:310-312.
[10]Kumar P, Pathan S, Vincent S, et al., 2023. A compact quad-port UWB MIMO antenna with improved isolation using a novel mesh-like decoupling structure and unique DGS. IEEE Trans Circ Syst II Exp Briefs, 70(3):949-953.
[11]Lau BK, Andersen JB, 2012. Simple and efficient decoupling of compact arrays with parasitic scatterers. IEEE Trans Antenn Propag, 60(2):464-472.
[12]Li M, Jiang LJ, Yeung KL, 2019. Novel and efficient parasitic decoupling network for closely coupled antennas. IEEE Trans Antenn Propag, 67(6):3574-3585.
[13]Li M, Jiang LJ, Yeung KL, 2020. A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays. IEEE Trans Veh Technol, 69(6):6242-6253.
[14]Li M, Zhang YJ, Wu D, et al., 2022a. Decoupling and matching network for dual-band MIMO antennas. IEEE Trans Antenn Propag, 70(3):1764-1775.
[15]Li M, Zhang YJ, Jiang F, et al., 2022b. Improvement for MIMO systems by increasing antenna isolation and shaping radiation pattern using hybrid network. IEEE Trans Ind Electron, 69(12):13891-13901.
[16]Li WT, Tu HC, He YJ, et al., 2023. A novel wideband tightly coupled dual-polarized reflectarray antenna. IEEE Trans Antenn Propag, 71(6):5422-5427.
[17]Liu F, Guo JY, Zhao LY, et al., 2020. Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Trans Antenn Propag, 68(1):552-557.
[18]Munk B, Taylor R, Durharn T, et al., 2003. A low-profile broadband phased array antenna. Proc IEEE Antennas and Propagation Society Int Symp, p.448-451.
[19]Qu SW, Chan CH, Xia MY, et al., 2013. High-efficiency periodic sparse microstrip array based on mutual coupling. IEEE Trans Antenn Propag, 61(4):1963-1970.
[20]Reid EW, Ortiz-Balbuena L, Ghadiri A, et al., 2012. A 324-element Vivaldi antenna array for radio astronomy instrumentation. IEEE Trans Instrum Meas, 61(1):241-250.
[21]Sui J, Wu KL, 2017. A general T-stub circuit for decoupling of two dual-band antennas. IEEE Trans Microw Theory Tech, 65(6):2111-2121.
[22]Wang YW, Yu ZW, 2017. A novel symmetric double-slot structure for antipodal Vivaldi antenna to lower cross-polarization level. IEEE Trans Antenn Propag, 65(10):5599-5604.
[23]Wang ZT, Wu Q, 2023. A novel decoupling feeding network for circularly polarized patch arrays using orthogonal mode decomposition. IEEE Trans Antenn Propag, 71(2):1448-1457.
[24]Wheeler H, 1965. Simple relations derived from a phased-array antenna made of an infinite current sheet. IEEE Trans Antenn Propag, 13(4):506-514.
[25]Wu KL, Wei CN, Mei XD, et al., 2017. Array-antenna decoupling surface. IEEE Trans Antenn Propag, 65(12):6728-6738.
[26]Xia RL, Qu SW, Bai X, et al., 2014. Experimental investigation of wide-angle impedance matching of phased array using overlapped feeding network. IEEE Antenn Wirel Propag Lett, 13:1284-1287.
[27]Zhai GH, Chen ZN, Qing XM, 2016. Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms. IEEE Trans Microw Theory Tech, 64(10):3060-3067.
[28]Zhang SH, Chen YK, Yang SW, 2023. An extremely wideband tightly coupled dipole array with shared-aperture configuration. IEEE Antenn Wirel Propag Lett, 22(6):1366-1370.
[29]Zhao LY, Yeung LK, Wu KL, 2014. A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals. IEEE Trans Antenn Propag, 62(5):2767-2776.
[30]Zhu YF, Chen YK, Yang SW, 2021. Cross-band mutual coupling reduction in dual-band base-station antennas with a novel grid frequency selective surface. IEEE Trans Antenn Propag, 69(12):8991-8996.
[31]Zou XJ, Wang GM, Wang YW, et al., 2019. An efficient decoupling network between feeding points for multielement linear arrays. IEEE Trans Antenn Propag, 67(5):3101-3108.
[32]Zou XJ, Wang GM, Kang GQ, et al., 2023. Wideband coupling suppression with neutralization-line-incorporated decoupling network in MIMO arrays. AEU-Int J Electron Commun, 167:154688.
Open peer comments: Debate/Discuss/Question/Opinion
<1>