CLC number: TH49
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-11-10
Cited: 0
Clicked: 4997
Bin-bin Liao, Dong-liang Wang, Li-yong Jia, Jin-yang Zheng, Chao-hua Gu. Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettage[J]. Journal of Zhejiang University Science A, 2019, 20(1): 36-49.
@article{title="Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettage",
author="Bin-bin Liao, Dong-liang Wang, Li-yong Jia, Jin-yang Zheng, Chao-hua Gu",
journal="Journal of Zhejiang University Science A",
volume="20",
number="1",
pages="36-49",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1800152"
}
%0 Journal Article
%T Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettage
%A Bin-bin Liao
%A Dong-liang Wang
%A Li-yong Jia
%A Jin-yang Zheng
%A Chao-hua Gu
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 1
%P 36-49
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1800152
TY - JOUR
T1 - Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettage
A1 - Bin-bin Liao
A1 - Dong-liang Wang
A1 - Li-yong Jia
A1 - Jin-yang Zheng
A1 - Chao-hua Gu
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 1
SP - 36
EP - 49
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1800152
Abstract: This paper aims to study the damage mechanisms and mechanical responses of a Type III composite vessel by considering the effect of autofrettage. Firstly, damage models using hashin failure criteria and 3D strain-based damage evolution laws for composite layers are implemented by implicit finite element codes using ABAQUS-UMAT (user material subroutine module). Secondly, the appropriate autofrettage pressure is determined by finite element analysis (FEA), in which the fiber stress ratio and the generated residual stress in the aluminium liner are investigated according to the related regulations. Finally, the effects of the autofrettage process on the internal pressure-displacement curves and damage evolution behaviors for matrix and fiber are discussed. For a composite vessel after autofrettage, the stresses in the composite layers and aluminium liner are also explored. Results show that the progressive damage evolution behaviors of the composite vessel with autofrettage and without autofrettage are basically consistent except there is some difference during the unloading process and the repressurization process in respect of matrix damage.
[1]Bakaiyan H, Hosseini H, Ameri E, 2009. Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Composite Structures, 88(4):532-541.
[2]DOT (Department of Transportation), 2007. Basic Requirements for Fully Wrapped Carbon-fiber Reinforced Aluminum Lined Cylinders, DOT-CFFC. DOT, USA.
[3]Francescato P, Gillet A, Leh D, et al., 2012. Comparison of optimal design methods for type 3 high-pressure storage tanks. Composite Structures, 94(6):2087-2096.
[4]Gentilleau B, Villalonga S, Nony F, et al., 2015. A probabilistic damage behavior law for composite material dedicated to composite pressure vessel. International Journal of Hydrogen Energy, 40(38):13160-13164.
[5]Hashin Z, 1981. Fatigue failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 48(4):846-852.
[6]Hashin Z, Rotem A, 1973. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 7(4):448-464.
[7]Hong JH, Han MG, Chang SH, 2014. Safety evaluation of 70 MPa-capacity type III hydrogen pressure vessel considering material degradation of composites due to temperature rise. Composite Structures, 113:127-133.
[8]Hu J, Chandrashekhara K, 2009. Fracture analysis of hydrogen storage composite cylinders with liner crack accounting for autofrettage effect. International Journal of Hydrogen Energy, 34(8):3425-3435.
[9]Huang CH, Lee YJ, 2003. Experiments and simulation of the static contact crush of composite laminated plates. Composite Structures, 61(3):265-270.
[10]Jahromi BH, Ajdari A, Nayeb-Hashemi H, et al., 2010. Autofrettage of layered and functionally graded metal– ceramic composite vessels. Composite Structures, 92(8):1813-1822.
[11]Ju J, Pickle BD, Morgan RJ, et al., 2007. An initial and progressive failure analysis for cryogenic composite fuel tank design. Journal of Composite Materials, 41(21):2545-2568.
[12]Kim CU, Kang JH, Hong CS, et al., 2005. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Composite Structures, 67(4):443-452.
[13]Kim DH, Jung KH, Lee IG, et al., 2017. Three-dimensional progressive failure modeling of glass fiber reinforced thermoplastic composites for impact simulation. Composite Structures, 176:757-767.
[14]Lapczyk I, Hurtado JA, 2007. Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 38(11):2333-2341.
[15]Li DH, Liu Y, Zhang X, 2014. Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method. Composite Structures, 110:249-275.
[16]Liu PF, Xu P, Zheng JY, 2009. Artificial immune system for optimal design of composite hydrogen storage vessel. Computational Materials Science, 47(1):261-267.
[17]Liu PF, Chu JK, Hou SJ, et al., 2012a. Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel. Computational Materials Science, 60:137-148.
[18]Liu PF, Chu JK, Hou SJ, et al., 2012b. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: a review. Renewable and Sustainable Energy Reviews, 16(4):1817-1827.
[19]Liu PF, Chu JK, Liu YL, et al., 2012c. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Materials & Design, 37:228-235.
[20]Liu PF, Xing LJ, Zheng JY, 2014. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Composites Part B: Engineering, 56:54-61.
[21]Liu PF, Liao BB, Jia LY, et al., 2016. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Composite Structures, 149:408-422.
[22]Onder A, Sayman O, Dogan T, et al., 2009. Burst failure load of composite pressure vessels. Composite Structures, 89(1):159-166.
[23]Puck A, Schürmann H, 2002. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology, 62(12-13):1633-1662.
[24]Rafiee R, Reshadi F, 2014. Simulation of functional failure in GRP mortar pipes. Composite Structures, 113:155-163.
[25]Rafiee R, Amini A, 2015. Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes. Computational Materials Science, 96:579-588.
[26]Rafiee R, Fakoor M, Hesamsadat H, 2015a. The influence of production inconsistencies on the functional failure of GRP pipes. Steel and Composite Structures, 19(6):1369-1379.
[27]Rafiee R, Reshadi F, Eidi S, 2015b. Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes. Materials & Design, 67:422-427.
[28]Son DS, Chang SH, 2012. Evaluation of modeling techniques for a type III hydrogen pressure vessel (70 MPa) made of an aluminum liner and a thick carbon/epoxy composite for fuel cell vehicles. International Journal of Hydrogen Energy, 37(3):2353-2369.
[29]Son DS, Hong JH, Chang SH, 2012. Determination of the autofrettage pressure and estimation of material failures of a Type III hydrogen pressure vessel by using finite element analysis. International Journal of Hydrogen Energy, 37(17):12771-12781.
[30]Tan W, Falzon BG, Chiu LNS, et al., 2015. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates. Composites Part A: Applied Science and Manufacturing, 71:212-226.
[31]Tsai SW, Wu EM, 1971. A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1):58-80.
[32]Vasiliev VV, Krikanov AA, Razin AF, 2003. New generation of filament-wound composite pressure vessels for commercial applications. Composite Structures, 62(3-4):449-459.
[33]Wang L, Zheng CX, Luo HY, et al., 2015. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Composite Structures, 134:475-482.
[34]Xia M, Takayanagi H, Kemmochi K, 2001. Analysis of multi-layered filament-wound composite pipes under internal pressure. Composite Structures, 53(4):483-491.
[35]Xiao FQ, Wu YZ, Zheng JY, et al., 2017. A load-holding time prediction method based on creep strain relaxation for the cold-stretching process of S30408 cryogenic pressure vessels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(3):871-881.
[36]Xu P, Zheng JY, Chen HG, et al., 2010. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. International Journal of Hydrogen Energy, 35(7):2840-2846.
[37]Zheng CX, Yang F, Zhu AS, 2009. Mechanical analysis and reasonable design for Ti-Al alloy liner wound with carbon fiber resin composite high pressure vessel. Journal of Zhejiang University-SCIENCE A, 10(3):384-391.
[38]Zheng CX, Wang L, Li R, et al., 2013. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):393-400.
[39]Zheng JY, Liu PF, 2008. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates. Computational Materials Science, 42(3):453-461.
Open peer comments: Debate/Discuss/Question/Opinion
<1>