CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-02-01
Cited: 0
Clicked: 1472
Pei WANG, Ying GE, Tuo WANG, Qi-wei LIU, Shun-xiang SONG. CFD-DEM modelling of suffusion in multi-layer soils with differentfines contents and impermeable zones[J]. Journal of Zhejiang University Science A, 2023, 24(1): 6-19.
@article{title="CFD-DEM modelling of suffusion in multi-layer soils with differentfines contents and impermeable zones",
author="Pei WANG, Ying GE, Tuo WANG, Qi-wei LIU, Shun-xiang SONG",
journal="Journal of Zhejiang University Science A",
volume="24",
number="1",
pages="6-19",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200108"
}
%0 Journal Article
%T CFD-DEM modelling of suffusion in multi-layer soils with differentfines contents and impermeable zones
%A Pei WANG
%A Ying GE
%A Tuo WANG
%A Qi-wei LIU
%A Shun-xiang SONG
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 1
%P 6-19
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200108
TY - JOUR
T1 - CFD-DEM modelling of suffusion in multi-layer soils with differentfines contents and impermeable zones
A1 - Pei WANG
A1 - Ying GE
A1 - Tuo WANG
A1 - Qi-wei LIU
A1 - Shun-xiang SONG
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 1
SP - 6
EP - 19
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200108
Abstract: suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards. Previous studies of it have mainly focused on suffusion in homogeneous soil specimens. In this study, the coupled discrete element method (DEM) and computational fluid dynamics (CFD) approach is adopted to model suffusion in multi-layered soils with different fines contents, and soils with one or more impermeable zones. The parameters of the CFD-DEM model are first calibrated with the classic Ergun test and a good match with experiment is obtained. Then suffusion in multi-layered soils with different fines contents and impermeable zones is simulated and discussed. The simulation results show that, for soils with multiple layers, the cumulative eroded mass is mainly determined by the fines content of the bottom layer. In general, the higher the fines content of the bottom soil layer, the higher the cumulative eroded mass. In addition, suffusion is more severe if the fines content of the layer above is decreased. impermeable zones inside soil specimens can increase the flow velocity around those zones, facilitating the migration of fine particles and intensifying suffusion.
[1]BaoN, WeiJ, ChenJF, et al., 2020. 2D and 3D discrete num
[2]erical modelling of soil arching. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(5):350-365.
[3]ChangDS, ZhangLM, 2013. Extended internal stability criteria for soils under seepage. Soils and Foundations, 53(4):569-583.
[4]ChengK, WangY, YangQ, 2018. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Computers and Geotechnics, 100:30-51.
[5]di FeliceR, 1994. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 20(1):153-159.
[6]EmersonW, 1967. A classification of soil aggregates based on their coherence in water. Soil Research, 5(1):47-57.
[7]ErgunS, 1952. Fluid flow through packed columns. Chemical Engineering Progress, 48:89-94.
[8]FosterM, FellR, SpannagleM, 2000. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5):1000-1024.
[9]GhebreiyessusYT, GantzerCJ, AlbertsEE, et al., 1994. Soil erosion by concentrated flow: shear stress and bulk density. Transactions of the ASAE, 37(6):1791-1797.
[10]HansonGJ, HuntSL, 2007. Lessons learned using laboratory jet method to measure soil erodibility of compacted soils. Applied Engineering in Agriculture, 23(3):305-312.
[11]HorikoshiK, TakahashiA, 2015. Suffusion-induced change in spatial distribution of fine fractions in embankment subjected to seepage flow. Soils and Foundations, 55(5):1293-1304.
[12]HuZ, ZhangYD, YangZX, 2019. Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD-DEM study. Acta Geotechnica, 14(3):795-814.
[13]HuZ, ZhangYD, YangZX, 2020. Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. Journal of Geotechnical and Geoenvironmental Engineering, 146(5):04020024.
[14]IndraratnaB, NguyenVT, RujikiatkamjornC, 2011. Assessing the potential of internal erosion and suffusion of granular soils. Journal of geotechnical and Geoenvironmental Engineering, 137(5):550-554.
[15]Itasca, 2015. PFC 3D particle flow code in 3 dimensions. PFC 5.0 Documentation. Itasca, Minneapolis, USA.
[16]JasakH, JemcovA, TukovicZ, 2007. OpenFOAM: ACþþ library for complex physics simulations. Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia, Vol. 1000.
[17]JinZ, LuZ, YangY, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):882-893.
[18]KakuturuS, ReddiLN, 2006. Evaluation of the parameters influencing self-healing in earth dams. Journal of Geotechnical and Geoenvironmental Engineering, 132(7):879-889.
[19]KenneyTC, LauD, 1985. Internal stability of granular filters. Canadian Geotechnical Journal, 22(2):215-225.
[20]LiuXX, ShenSL, XuYS, et al., 2018. Analytical approach for time-dependent groundwater inflow into shield tunnel face in confined aquifer. International Journal for Numerical and Analytical Methods in Geomechanics, 42(4):655-673.
[21]LiuXX, ShenSL, XuYS, et al., 2021a. Non-linear spring model for backfill grout-consolidation behind shield tunnel lining. Computers and Geotechnics, 136:104235.
[22]LiuXX, ShenSL, XuYS, et al., 2021b. A diffusion model for backfill grout behind shield tunnel lining. International Journal for Numerical and Analytical Methods in Geomechanics, 45(4):457-477.
[23]LiuYJ, WangLZ, HongY, et al., 2020. A coupled CFD-DEM investigation of suffusion of gap graded soil: coupling effect of confining pressure and fines content. International Journal for Numerical and Analytical Methods in Geomechanics, 44(18):2473-2500.
[24]LiuYJ, YinZY, WangLZ, et al., 2021. A coupled CFD–DEM investigation of internal erosion considering suspension flow. Canadian Geotechnical Journal, 58(9):1411-1425.
[25]LyleWM, SmerdonET, 1965. Relation of compaction and other soil properties to erosion resistance of soils. Transactions of the ASAE, 8(3):419-0422.
[26]LyuHM, ShenSL, WuYX, et al., 2021. Calculation of groundwater head distribution with a close barrier during excavation dewatering in confined aquifer. Geoscience Frontiers, 12(2):791-803.
[27]MoffatR, FanninRJ, GarnerSJ, 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Canadian Geotechnical Journal, 48(3):399-412.
[28]QianJG, LiWY, YinZY, et al., 2021a. Influences of buried depth and grain size distribution on seepage erosion in granular soils around tunnel by coupled CFD-DEM approach. Transportation Geotechnics, 29:100574.
[29]QianJG, ZhouC, YinZY, et al., 2021b. Investigating the effect of particle angularity on suffusion of gap-graded soil using coupled CFD-DEM. Computers and Geotechnics, 139:104383.
[30]ReddiLN, LeeIM, BonalaMVS, 2000. Comparison of internal and surface erosion using flow pump tests on a sand-kaolinite mixture. Geotechnical Testing Journal, 23(1):116-122.
[31]ShenSL, LyuHM, ZhouAN, et al., 2021. Automatic control of groundwater balance to combat dewatering during construction of a metro system. Automation in Construction, 123:103536.
[32]SherardJL, DunniganLP, DeckerRS, 1976. Identification and nature of dispersive soils. Journal of the Geotechnical Engineering Division, 102(4):287-301.
[33]WanCF, FellR, 2004. Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical Testing Journal, 27(3):295-303.
[34]WangP, YinZY, WangZY, 2022. Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage. Journal of Engineering Mechanics, 148(1):04021133.
[35]WangT, ZhangFS, FurtneyJ, et al., 2022. A review of methods, applications and limitations for incorporating fluid flow in the discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 14(3):1005-1024.
[36]WenMJ, WangKH, WuWB, et al., 2021. Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(12):992-1004. http://doi.org/10.1631/jzus.A2100084
[37]XieZZ, ShenYS, TakabatakeK, et al., 2020. Coarse-grained DEM study of solids sedimentation in water. Powder Technology, 361:21-32.
[38]XieZZ, WangS, ShenYS, 2021a. CFD-DEM modelling of the migration of fines in suspension flow through a solid packed bed. Chemical Engineering Science, 231:116261.
[39]XieZZ, WangS, ShenYS, 2021b. CFD-DEM study of segregation and mixing characteristics under a bi-disperse solid-liquid fluidised bed. Advanced Powder Technology, 32(11):4078-4095.
[40]XiongH, WuH, BaoXH, et al., 2021a. Investigating effect of particle shape on suffusion by CFD-DEM modeling. Construction and Building Materials, 289:123043.
[41]XiongH, YinZY, ZhaoJD, et al., 2021b. Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils. Acta Geotechnica, 16(2):399-419.
[42]YangJ, YinZY, LaouafaF, et al., 2019a. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Computers and Geotechnics, 111:157-171.
[43]YangJ, YinZY, LaouafaF, et al., 2019b. Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotechnica, 14(6):1615-1627.
[44]YangJ, YinZY, LaouafaF, et al., 2020. Three-dimensional hydromechanical modeling of internal erosion in dike‐on-foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(8):1200-1218.
[45]YinZY, WangP, ZhangFS, 2020. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunnelling and Underground Space Technology, 100:103394.
[46]YinZY, JinYF, ZhangX, 2021. Large deformation analysis in geohazards and geotechnics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):851-855.
[47]ZhaoT, HoulsbyGT, UtiliS, 2014. Investigation of granular batch sedimentation via DEM-CFD coupling. Granular Matter, 16(6):921-932.
Open peer comments: Debate/Discuss/Question/Opinion
<1>