Full Text:   <836>

Summary:  <450>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-07-20

Cited: 0

Clicked: 1423

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhiguo HE

https://orcid.org/0000-0002-0612-9062

Pengcheng JIAO

https://orcid.org/0000-0002-9577-3828

Xinghong YE

https://orcid.org/0000-0003-3298-8108

Yang YANG

https://orcid.org/0000-0002-3899-3752

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.7 P.596-611

http://doi.org/10.1631/jzus.A2300056


Underwater minirobots actuated by hybrid driving method


Author(s):  Xinghong YE, Yang YANG, Pengcheng JIAO, Zhiguo HE, Lingwei LI

Affiliation(s):  Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China; more

Corresponding email(s):   pjiao@zju.edu.cn, hezhiguo@zju.edu.cn

Key Words:  Hybrid driving method (HDM), Underwater minirobots, Operation reliability, Transient actuation



Abstract: 
underwater minirobots have attracted significant interest due to their value in complex application scenarios. Typical underwater minirobots are driven mainly by a soft or rigid actuator. However, soft actuation is currently facing challenges, including inadequate motional control accuracy and the lack of a continuous and steady driving force, while conventional rigid actuation has limited actuation efficiency, environmental adaptability, and motional flexibility, which severely limits the accomplishment of complicated underwater tasks. In this study, we developed underwater minirobots actuated by a hybrid driving method (HDM) that combines combustion-based actuators and propeller thrusters to achieve accurate, fast, and flexible underwater locomotion performance. Underwater experiments were conducted to investigate the kinematic performance of the minirobots with respect to the motion modes of rising, drifting, and hovering. Numerical models were used to investigate the kinematic characteristics of the minirobots, and theoretical models developed to unveil the mechanical principle that governs the driving process. Satisfactory agreement was obtained from comarisons of the experimental, numerical, and theoretical results. Finally, the HDM was compared with selected hybrid driving technologies in terms of acceleration and response time. The comparison showed that the minirobots based on HDM were generally superior in transient actuation ability and reliability.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE