Full Text:   <708>

Summary:  <403>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-10-19

Cited: 0

Clicked: 927

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Menglian ZHENG

https://orcid.org/0000-0002-4418-4361

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.10 P.859-874

http://doi.org/10.1631/jzus.A2300087


Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness


Author(s):  Jinchi SUN, Xiongwei TIAN, Zhangqing LIU, Jie SUN, Menglian ZHENG

Affiliation(s):  Institute of Thermal Science and Power Systems, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   menglian_zheng@zju.edu.cn

Key Words:  Microfluidic, Fuel cell, Membraneless, Slanted groove micro-mixer, Mass transfer, Depletion boundary layer


Jinchi SUN, Xiongwei TIAN, Zhangqing LIU, Jie SUN, Menglian ZHENG. Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness[J]. Journal of Zhejiang University Science A, 2023, 24(10): 859-874.

@article{title="Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness",
author="Jinchi SUN, Xiongwei TIAN, Zhangqing LIU, Jie SUN, Menglian ZHENG",
journal="Journal of Zhejiang University Science A",
volume="24",
number="10",
pages="859-874",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300087"
}

%0 Journal Article
%T Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness
%A Jinchi SUN
%A Xiongwei TIAN
%A Zhangqing LIU
%A Jie SUN
%A Menglian ZHENG
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 10
%P 859-874
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300087

TY - JOUR
T1 - Microfluidic fuel cells integrating slanted groove micro-mixers to terminate growth of depletion boundary layer thickness
A1 - Jinchi SUN
A1 - Xiongwei TIAN
A1 - Zhangqing LIU
A1 - Jie SUN
A1 - Menglian ZHENG
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 10
SP - 859
EP - 874
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300087


Abstract: 
Because of potential high energy densities, microfluidic fuel cells can serve as micro-scale power sources. Because microfluidic fuel cells typically operate in the co-laminar flow regime to enable a membrane-less design, they generally suffer from severe mass transfer limitations with respect to diffusion transport. To address this issue, a novel channel design that integrates slanted groove micro-mixers on the side walls of the channel is proposed. Numerical modeling on the design of groove micro-mixers and grooveless design demonstrates a mass transfer enhancement that has a 115% higher limiting current density and well-controlled convective mixing between the oxidant and the fuel streams with the use of slanted groove micro-mixers. Moreover, the growth of the thickness of the depletion boundary layer is found to be terminated within approximately 2 mm from the channel entrance, which is distinct from the constantly growing pattern in the grooveless design. In addition, a simplified mass transfer model capable of modeling the mass transfer prFocess with the presence of the transverse secondary flow is developed. Further, a dimensionless correlation is derived to analyze the effects of the design parameters on the limiting current density. The present theoretical study paves the way towards an optimal design of a microfluidic fuel cell integrating groove micro-mixers.

集成斜槽微混合器以终止耗尽边界层厚度增长的微流体燃料电池

作者:孙金池1,田雄伟1,柳张清1,孙洁2,郑梦莲1,3
机构:1浙江大学,能源工程学院,热工与动力系统研究所,中国杭州,310027;2浙大宁波理工学院,能源与环境工程研究所,中国宁波,315100;3能源高效清洁利用全国重点实验室,中国杭州,310027
目的:由于微流体燃料电池通常在共层流状态下运行以实现无膜设计,因此它们通常在扩散传输方面受到严重的传质限制。本文旨在研究新型流道设计并提供优化设计的一般性理论模型。
创新点:1.提出了在流道侧壁集成斜槽微混合器的新型微流体燃料电池,并发现了其耗尽边界层厚度停止增长的现象;2.针对存在横向二次流的传质过程开发了简化的模型以及极限电流密度的无量纲关系式。
方法:1.通过计算流体力学软件模拟新型流道中电解质的传质过程,研究预测电池性能(极限电流密度与氧化剂流和燃料流之间的对流混合);2.通过开发简化的模型,揭示横向二次流的传质强化机理;3.通过推导无量纲关系式,分析设计参数对极限电流密度的影响。
结论:1.与无槽微流体燃料电池相比,集成斜槽微混合器的微流体燃料电池实现了显著的传质增强,且极限电流密度增加了115%;2.由于电解质之间界面附近的横向二次流动较弱,所以电解质之间的对流混合得到了很好的控制;3.研究发现耗尽边界层厚度的增长在距离通道入口仅10倍流道高度处终止,并可用简化的传质模型进行机理解释;4.无量纲关系式表明,随着电极长度的增加,极限电流密度具有渐近值,且该数值受电极附近横向流动速度以及电极宽度的显著影响。

关键词:微流体;燃料电池;无膜;斜槽微混合器;传质;耗尽边界层

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AhmedDH, ParkHB, SungHJ, 2008. Optimum geometrical design for improved fuel utilization in membraneless micro fuel cell. Journal of Power Sources, 185(1):143-152.

[2]BazylakA, SintonD, DjilaliN, 2005. Improved fuel utilization in microfluidic fuel cells: a computational study. Journal of Power Sources, 143(1-2):57-66.

[3]BrushettFR, JayashreeRS, ZhouWP, et al., 2009. Investigation of fuel and media flexible laminar flow-based fuel cells. Electrochimica Acta, 54(27):7099-7105.

[4]ChangMH, ChenFL, FangNS, 2006. Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel. Journal of Power Sources, 159(2):810-816.

[5]ChobanER, MarkoskiLJ, WieckowskiA, et al., 2004. Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128(1):54-60.

[6]ChobanER, WaszczukP, KenisPJA, 2005a. Characterization of limiting factors in laminar flow-based membraneless microfuel cells. Electrochemical and Solid-State Letters, 8(7):A348.

[7]ChobanER, SpendelowJS, GancsL, et al., 2005b. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochimica Acta, 50(27):5390-5398.

[8]CohenJL, VolpeDJ, WestlyDA, et al., 2005a. A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V. Langmuir, 21(8):3544-3550.

[9]CohenJL, WestlyDA, PechenikA, 2005b. Fabrication and preliminary testing of a planar membraneless microchannel fuel cell. Journal of Power Sources, 139(1-2):96-105.

[10]da MotaN, FinkelsteinDA, KirtlandJD, et al., 2012. Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0.25 W/cm2. Journal of the American Chemical Society, 134(14):6076-6079.

[11]DyerCK, 2002. Fuel cells for portable applications. Journal of Power Sources, 106(1-2):31-34.

[12]FerrignoR, StroockAD, ClarkTD, et al., 2002. Membraneless vanadium redox fuel cell using laminar flow. Journal of the American Chemical Society, 124(44):12930-12931.

[13]ForbesTP, KraljJG, 2012. Engineering and analysis of surface interactions in a microfluidic herringbone micromixer. Lab on a Chip, 12(15):2634-2637.

[14]GurrolaMP, Escalona-VillalpandoRA, ArjonaN, et al., 2021. Microfluidic fuel cells. In: Encyclopedia of Electrochemistry. Wiley.

[15]HaSM, AhnY, 2014. Laminar flow-based micro fuel cell utilizing grooved electrode surface. Journal of Power Sources, 267:731-738.

[16]HasegawaS, ShimotaniK, KishiK, et al., 2005. Electricity generation from decomposition of hydrogen peroxide. Electrochemical and Solid-State Letters, 8(2):A119-A121.

[17]JayashreeRS, GancsL, ChobanER, et al., 2005. Air-breathing laminar flow-based microfluidic fuel cell. Journal of the American Chemical Society, 127(48):16758-16759.

[18]JayashreeRS, EgasD, SpendelowJS, et al., 2006. Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochemical and Solid-State Letters, 9(5):A252.

[19]JayashreeRS, YoonSK, BrushettFR, et al., 2010. On the performance of membraneless laminar flow-based fuel cells. Journal of Power Sources, 195(11):3569-3578.

[20]KirtlandJD, McGrawGJ, StroockAD, 2006. Mass transfer to reactive boundaries from steady three-dimensional flows in microchannels. Physics of Fluids, 18(7):073602.

[21]KirtlandJD, SiegelCR, StroockAD, 2009. Interfacial mass transport in steady three-dimensional flows in microchannels. New Journal of Physics, 11(7):075028.

[22]KjeangE, ProctorBT, BroloAG, et al., 2007a. High-performance microfluidic vanadium redox fuel cell. Electrochimica Acta, 52(15):4942-4946.

[23]KjeangE, RoeschB, McKechnieJ, et al., 2007b. Integrated electrochemical velocimetry for microfluidic devices. Microfluidics and Nanofluidics, 3(4):403-416.

[24]KjeangE, McKechnieJ, SintonD, et al., 2007c. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. Journal of Power Sources, 168(2):379-390.

[25]KjeangE, MichelR, HarringtonDA, et al., 2008. A microfluidic fuel cell with flow-through porous electrodes. Journal of the American Chemical Society, 130(12):4000-4006.

[26]KjeangE, DjilaliN, SintonD, 2009. Microfluidic fuel cells: a review. Journal of Power Sources, 186(2):353-369.

[27]KunduA, JangJH, GilJH, et al., 2007. Micro-fuel cells—current development and applications. Journal of Power Sources, 170(1):67-78.

[28]LeeJ, LimKG, PalmoreGTR, et al., 2007. Optimization of microfluidic fuel cells using transport principles. Analytical Chemistry, 79(19):7301-7307.

[29]LeeJW, KjeangE, 2013. Nanofluidic fuel cell. Journal of Power Sources, 242:472-477.

[30]LeeSW, AhnY, 2015. Influence of electrode groove geometry on the passive control of the depletion layer in microfluidic fuel cells. Journal of Micromechanics and Microengineering, 25(12):127001.

[31]LynnNS, DandyDS, 2007. Geometrical optimization of helical flow in grooved micromixers. Lab on a Chip, 7(5):580-587.

[32]MarschewskiJ, JungS, RuchP, et al., 2015. Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices. Lab on a Chip, 15(8):1923-1933.

[33]MarschewskiJ, RuchP, EbejerN, et al., 2017. On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters. International Journal of Heat and Mass Transfer, 106:884-894.

[34]ModestinoMA, Fernandez RivasD, HashemiSMH, et al., 2016. The potential for microfluidics in electrochemical energy systems. Energy & Environmental Science, 9(11):3381-3391.

[35]Moreno-ZuriaA, Ortiz-OrtegaE, GurrolaMP, et al., 2017. Evolution of microfluidic fuel stack design as an innovative alternative to energy production. International Journal of Hydrogen Energy, 42(46):27929-27939.

[36]NasharudinMN, KamarudinSK, HasranUA, et al., 2014. Mass transfer and performance of membrane-less micro fuel cell: a review. International Journal of Hydrogen Energy, 39(2):1039-1055.

[37]NewmanJ, 1968. Engineering design of electrochemical systems. Industrial and Engineering Chemistry, 60(4):12-27.

[38]NguyenNT, ChanSH, 2006. Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review. Journal of Micromechanics and Microengineering, 16(4):R1-R12.

[39]ShaeghSAM, NguyenNT, ChanSH, 2011. A review on membraneless laminar flow-based fuel cells. International Journal of Hydrogen Energy, 36(9):5675-5694.

[40]ShaeghSAM, NguyenNT, ChanSH, et al., 2012. Air-breathing membraneless laminar flow-based fuel cell with flow-through anode. International Journal of Hydrogen Energy, 37(4):3466-3476.

[41]StroockAD, McgrawGJ, 2004. Investigation of the staggered herringbone mixer with a simple analytical model. Philosophical Transactions of the Royal Society of A: Mathematical, Physical and Engineering Sciences, 362(1818):971-986.

[42]StroockAD, DertingerSK, WhitesidesGM, et al., 2002. Patterning flows using grooved surfaces. Analytical Chemistry, 74(20):5306-5312.

[43]TsuchiyaH, KobayashiO, 2004. Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 29(10):985-990.

[44]XuanJ, LeungDYC, LeungMKH, et al., 2011. Chaotic flow-based fuel cell built on counter-flow microfluidic network: predicting the over-limiting current behavior. Journal of Power Sources, 196(22):9391-9397.

[45]YoonSK, FichtlGW, KenisPJA, 2006. Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab on a Chip, 6(12):1516-1524.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE