Full Text:   <847>

Summary:  <99>

CLC number: 

On-line Access: 2025-02-28

Received: 2023-12-18

Revision Accepted: 2024-03-25

Crosschecked: 2025-02-28

Cited: 0

Clicked: 1730

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bo WANG

https://orcid.org/0009-0001-2483-5665

Hua ZHANG

https://orcid.org/0000-0002-0294-7981

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.2 P.109-120

http://doi.org/10.1631/jzus.A2300638


Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures


Author(s):  Qinyu ZHAO, Jun CHENG, Yanrui ZHANG, Haoren WANG, Bo WANG, Ruize LI, Hua ZHANG, Zhihua GAN

Affiliation(s):  School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; more

Corresponding email(s):   wangbo@hzcu.edu.cn, zhanghua@usst.edu.cn

Key Words:  Rotary valve, Exergy analysis, Liquid helium temperature, Gifford-McMahon-type pulse-tube cryocooler (GM-PTC), High efficiency


Qinyu ZHAO, Jun CHENG, Yanrui ZHANG, Haoren WANG, Bo WANG, Ruize LI, Hua ZHANG, Zhihua GAN. Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures[J]. Journal of Zhejiang University Science A, 2025, 26(2): 109-120.

@article{title="Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures",
author="Qinyu ZHAO, Jun CHENG, Yanrui ZHANG, Haoren WANG, Bo WANG, Ruize LI, Hua ZHANG, Zhihua GAN",
journal="Journal of Zhejiang University Science A",
volume="26",
number="2",
pages="109-120",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300638"
}

%0 Journal Article
%T Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures
%A Qinyu ZHAO
%A Jun CHENG
%A Yanrui ZHANG
%A Haoren WANG
%A Bo WANG
%A Ruize LI
%A Hua ZHANG
%A Zhihua GAN
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 2
%P 109-120
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300638

TY - JOUR
T1 - Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures
A1 - Qinyu ZHAO
A1 - Jun CHENG
A1 - Yanrui ZHANG
A1 - Haoren WANG
A1 - Bo WANG
A1 - Ruize LI
A1 - Hua ZHANG
A1 - Zhihua GAN
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 2
SP - 109
EP - 120
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300638


Abstract: 
Gifford-McMahon-type pulse-tube cryocoolers (GM-PTCs) working at liquid helium temperatures are promising in quantum technology and cryogenic physics for their high reliability and minimal vibration. These features stem from the fact that there are no extra moving parts introduced into the system. The rotary valve is a key component in GM-PTCs that transfers the output exergy from the compressor to the cold head. Because a low Carnot efficiency of 1.58% is achieved at liquid helium temperatures, optimizing the rotary valve is crucial for improving the efficiency of GM-PTCs. In this regard, an exergy-loss analysis method is proposed in this paper to quantitatively obtain the leakage loss and viscosity loss of a rotary valve by experimental measurements. The results show that viscosity loss accounts for more than 97.5% of the total exergy loss in the rotary valve, and that it is possible to improve the structure of the rotary valve by expanding the flow area by 1.5 times. To verify the method, the cooling temperature and power of a remote two-stage GM-PTC were monitored, with original or optimized rotary valves installed. The experimental results show that compared to the original rotary valve, the optimized rotary valve can improve the cooling efficiency of a GM-PTC by 16.4%, with a cooling power of 0.78 W at 4.2 K.

液氦温区Gifford-McMahon脉管制冷机的旋转阀结构优化

作者:赵钦宇1,程君2,张艳瑞2,王浩任2,3,王博2,李睿泽2,3,张华1,甘智华2,3
机构:1上海理工大学,能源与动力工程学院,中国上海,200093;2浙大城市学院,浙江省制冷与低温重点实验室,中国杭州,310015;3浙江大学,浙江省制冷与低温重点实验室,中国杭州,310027
目的:液氦温区Gifford-McMahon(GM)脉管制冷机以其长寿命和低振动等优势逐渐成为量子科技和低温物理等尖端科学领域的理想制冷源,但现有旋转阀部件中的不可逆损失严重限制了其在液氦温区的制冷效率。本文旨在提升液氦温区GM脉管制冷机的制冷性能。针对GM脉管制冷机的关键部件旋转阀,本文开发了以泄露损失和流阻损失为指标的㶲损评估方法,优化了旋转阀的结构并基于实验进行了验证,以期为液氦温区高效大冷量的GM脉管制冷机的开发提供参考。
创新点:1.通过交变流动旋转阀㶲损失方程,构建以泄露损失和流阻损失为指标的GM脉管制冷机旋转阀㶲损评估方法;2.搭建实验测试平台,对旋转阀烟损失进行定量测算;3.完整开展从㶲损失理论分析到旋转阀关键部件优化再到实际制冷机性能提升的闭环研究。
方法:1.通过理论分析,推导获得旋转阀内㶲损失特性与操作参数的定量关系(公式(2)~(6));2.分别搭建旋转阀泄漏流量测试平台(图3)和㶲损失评估平台(图5),并根据实验平台定量分析不同运行频率、充气压力和负载对旋转阀㶲损失分布的影响;3.通过Sage软件计算旋转阀流阻损失对脉管制冷机制冷性能的影响情况(图9),并结合实际工艺扩大现有旋转阀的流通面积;4.通过旋转阀㶲损失分析和脉管制冷机性能测试的方法验证所述理论。
结论:1.在液氦温区GM脉管制冷机内的旋转阀中,流阻损失占97.5%以上,泄露损失只占2.5%,因此流阻损失是主要的㶲损失;2.旋转阀流通面积扩大1.5倍后其内流阻显著降低,且压缩机输出㶲可提高1.2~1.5倍;3.使用低流阻旋转阀驱动同一台制冷机冷头时,脉管制冷机可获得0.78 W@4.2 K制冷量,且制冷性能提高约16.4%。

关键词:旋转阀;㶲分析;液氦温区;GM脉管制冷机;高效制冷

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlduinoC, AlessandriaF, BalataM, et al., 2019. The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures. Cryogenics, 102:43-56.

[2]Bluefors, 2023a. Cryomech PT425 Pulse Tube Cryocooler. Bluefors. https://bluefors.‍com/products/cryomech-products/pt425-pulse-tube-cryocooler/

[3]Bluefors, 2023b. Cryomech PT450 Pulse Tube Cryocooler. Bluefors. https://bluefors.com/products/pulse-tube-cryocoolers/pt450/

[4]ChoiCQ, 2022. IBM Unveils 433-Qubit Osprey Chip. IEEE Spectrum. https://spectrum.ieee.org/ibm-quantum-computer-osprey

[5]deWaele ATAM, 2011. Basic operation of cryocoolers and related thermal machines. Journal of Low Temperature Physics, 164(5):179-236.

[6]deWaele ATAM, 2012. Finite heat-capacity effects in regenerators. Cryogenics, 52(1):1-7.

[7]GanZH, DongWQ, QiuLM, et al., 2009. A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics, 49(5):198-201.

[8]GedeonD, 2014. Sage User’s Guide. Sage Version 10th Edition. Gedeon Associates, USA.

[9]HaoXH, CoscoJ, ZerkleB, et al., 2022. Development of high cooling capacity and high efficiency 4.2 K pulse tube cryocoolers. International Cryocooler Conference, p.235-240.

[10]Hitachi, 2023. Cryogenic. Johnson Controls-Hitachi Air Conditioning Company. https://compressors.hitachiaircon.com/en/ranges/scroll-compressor/cryogenic

[11]HollisterMI, DhuleyRC, JamesC, et al., 2023. An update on the Colossus mK platform at Fermilab. IOP Conference Series: Materials Science and Engineering, 1302:012030.

[12]JiZQ, FanJ, DongJ, et al., 2022. Development of a cryogen-free dilution refrigerator. Chinese Physics B, 31(12):120703.

[13]KarpenkoM, BogdevičiusM, 2020. Investigation of hydrodynamic processes in the system–“pipeline-fittings”. TRANSBALTICA XI: Transportation Science and Technology, p.331-340.

[14]KarpenkoM, StosiakM, ŠukevičiusŠ, et al., 2023. Hydrodynamic processes in angular fitting connections of a transport machine’s hydraulic drive. Machines, 11(3):355.

[15]KasaiJ, KoyamaT, YokotaM, et al., 2022. Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope. Review of Scientific Instruments, 93(4):043711.

[16]LeiT, XuMY, 2022. Development of a 2 W 4 K pulse tube refrigerator with remote valve. International Cryocooler Conference, p.241-247.

[17]LiangW, deWaele ATAM, 2007. A new type of streaming in pulse tubes. Cryogenics, 47(9-10):468-473.

[18]LiuDL, DietrichM, ThummesG, et al., 2017. Numerical simulation of a GM-type pulse tube cryocooler system: part II. Rotary valve and cold head. Cryogenics, 81:100-106.

[19]PandaD, SatapathyAK, SarangiSK, 2019. Effect of valve opening shapes on the performance of a single-stage Gifford-McMahon cryocooler. Engineering Reports, 1(3):e12044.

[20]QiuLM, ThummesG, 2002. Valve timing effect on the cooling performance of a 4 K pulse tube cooler. Cryogenics, 42(5):327-333.

[21]RadebaughR, O’GallagherA, GaryJ, 2002. Regenerator behavior at 4 K: effect of volume and porosity. AIP Conference Proceedings, 613(1):961-968.

[22]SHICryogenics Group, 2023. Two-Stage Gifford-McMahon Cryocoolers. SHI Cryogenics Group. https://shicryogenics.com/products/cryocoolers/

[23]SwiftGW, 2002. Thermoacoustics: a Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America, New York, USA, p.97-106.

[24]TanaevaIA, BosCGK, deWaele ATAM, 2006. High-frequency pulse-tube refrigerator for 4 K. AIP Conference Proceedings, 823(1):821-828.

[25]The CUORE Collaboration, 2022. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature, 604(7904):53-58.

[26]ThummesG, GiebelerF, HeidenC, 1995. Effect of pressure wave form on pulse tube refrigerator performance. In: Ross RG (Ed.), Cryocoolers 8. Springer, Boston, USA, p.383-393.

[27]WangB, GanZH, 2013. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 61:43-70.

[28]WangC, QiuLM, DongWQ, et al., 2010. Comparison test of rotary valve system and solenoid valves system for a G-M type pulse tube cryocooler. Cryogenics, (5):‍6-10 (in Chinese).

[29]XuMY, MorieT, BaoQ, 2019. Cryocooler and Rotary Valve Mechanism. US Patent 10371417B2.

[30]ZhaoQY, WangB, ChaoW, et al., 2023. Numerical simulation and exergy analysis of a single-stage GM cryocooler. Heliyon, 9(7):e18479.

[31]ZhouSL, MatsubaraY, 1998. Experimental research of thermoacoustic prime mover. Cryogenics, 38(8):813-822.

[32]ZhuSW, KakimiY, MatsubaraY, 1997. Investigation of active-buffer pulse tube refrigerator. Cryogenics, 37(8):461-471.

[33]ZhuSW, KakimiY, MatsubaraY, 1998. Waiting time effect of a GM type orifice pulse tube refrigerator. Cryogenics, 38(6):619-624.

[34]ZhuSW, NogawaM, InoueT, 2009. Analysis of DC gas flow in GM type double inlet pulse tube refrigerators. Cryogenics, 49(2):66-71.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE