Full Text:   <1384>

Summary:  <206>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-11-24

Received: 2024-10-21

Revision Accepted: 2025-05-01

Crosschecked: 2025-11-25

Cited: 0

Clicked: 1885

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yang Yu

https://orcid.org/0000-0001-8021-4401

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.11 P.1021-1033

http://doi.org/10.1631/jzus.A2400484


Reliability-based optimization of laterally loaded piles with necking defects


Author(s):  Yang YU, Bo SHI, Qing LÜ, Chaofeng WU

Affiliation(s):  Ocean College, Zhejiang University, Zhoushan 316021, China; more

Corresponding email(s):   lvqing@zju.edu.cn

Key Words:  Necking defect, Laterally loaded pile, Soil parameter uncertainties, Foundation construction design, p-y curve analysis, Stochastic modeling


Share this article to: More |Next Article >>>

Yang YU, Bo SHI, Qing LÜ, Chaofeng WU. Reliability-based optimization of laterally loaded piles with necking defects[J]. Journal of Zhejiang University Science A, 2025, 26(11): 1021-1033.

@article{title="Reliability-based optimization of laterally loaded piles with necking defects",
author="Yang YU, Bo SHI, Qing LÜ, Chaofeng WU",
journal="Journal of Zhejiang University Science A",
volume="26",
number="11",
pages="1021-1033",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400484"
}

%0 Journal Article
%T Reliability-based optimization of laterally loaded piles with necking defects
%A Yang YU
%A Bo SHI
%A Qing LÜ
%A Chaofeng WU
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 11
%P 1021-1033
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400484

TY - JOUR
T1 - Reliability-based optimization of laterally loaded piles with necking defects
A1 - Yang YU
A1 - Bo SHI
A1 - Qing LÜ
A1 - Chaofeng WU
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 11
SP - 1021
EP - 1033
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400484


Abstract: 
laterally loaded piles, which are commonly used in sandy stratum foundations, are particularly susceptible to necking defects during cast-in-place installation due to borehole collapse risks. These construction-induced geometric imperfections substantially compromise pile safety under lateral loading conditions. To address this critical design challenge, we develop a reliability-based multi-objective optimization framework that simultaneously accounts for structural safety, construction economy, and design robustness. The proposed methodology integrates the p-y curve (where p is the soil pressure per unit length, and y is the lateral deflection of the pile) analysis with stochastic modeling, enabling efficient evaluation of pile performance considering uncertainties in soil parameters and depth and size variations of necking defects. A systematic design framework is implemented and validated through experimental case studies, successfully generating optimal designs along the Pareto front. The identified knee-point configurations serve as practical compromise solutions for engineering decisions. Parametric investigations further elucidate the influence of necking defect depth and sand friction angle variations on optimal design outcomes, offering insights into risk mitigation for pile construction.

考虑颈缩缺陷影响的侧向受荷桩可靠度优化设计方法

作者:于洋1,2,石博1,吕庆3,吴朝峰1,4
机构:1浙江大学,海洋学院,中国舟山,316021;2浙江大学海南研究院,中国三亚,572025;3浙江大学,建筑工程学院,中国杭州,310058;4中国能源建设集团浙江省电力设计院有限公司,中国杭州,310012
目的:侧向受荷桩广泛应用于砂土地基基础中,但其现浇施工易因钻孔塌孔引发颈缩缺陷,导致桩基在侧向荷载作用下的安全性显著降低。针对这一关键设计难题,本研究旨在开发一种基于可靠性的多目标优化设计框架,以平衡桩基础安全性、经济性与设计鲁棒性,减少颈缩缺陷影响。
创新点:1.提出了一种融合p-y曲线分析与随机模拟的高效方法,实现了对砂土参数、颈缩缺陷深度与尺寸变异等多源不确定性的量化评估;2.通过构建可靠性多目标优化框架,将桩身性能、成本控制及抗风险能力纳入统一设计体系,突破了传统单目标优化局限。
方法:1.集成随机建模与数值仿真技术,建立考虑土体参数空间变异性和颈缩缺陷几何随机性的桩-土相互作用计算方法(图1和2);2.通过系统化的设计框架,结合帕累托前沿优化算法生成备选优化方案,利用实验案例验证模型有效性(图8);3.开展参数敏感性分析,揭示颈缩缺陷深度与砂土摩擦角对最优设计的影响规律(图9~12)。
结论:1.基于电子表格计算方法,实现了综合考虑成本、安全性与稳健性的含颈缩缺陷的侧向受荷桩优化设计;2.该方法可在设计阶段主动应对颈缩缺陷影响,提升工程可靠性;3.发现缺陷埋深对设计稳健性有显著影响:当颈缩缺陷位于桩体深处(埋深大于0.4倍桩长)时,基于桩身内力分布特性,缺陷对整体稳健性的影响可忽略。

关键词:缺陷;侧向受荷桩;土体参数不确定性;地基基础设计;p-y曲线;随机模拟

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1](American Petroleum Institute)API, 2011. Geotechnical and Foundation Design Considerations, ANSI/API RP 2GEO:2011. API, Washington, USA.

[2]AugustesenAH, BrødbækKT, MøllerM, et al., 2009. Numerical modelling of large-diameter steel piles at Horns Rev. Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing, article 239.

[3]FattahMY, Al-ShakarchiY, KadhimYM, 2010. Investigation on the use of micropiles for substitution of defected piles by the finite element method. Journal of Engineering, 16(3):5300-5314.

[4]HariswaranS, PremalathaK, 2021. Experimental investigation on the behavior of a defective pile subject to a lateral load. Soil Mechanics and Foundation Engineering, 58(4):339-346.

[5]JuangCH, WangL, 2013. Reliability-based robust geotechnical design of spread foundations using multi-objective genetic algorithm. Computers and Geotechnics, 48:96-106.

[6]KallehaveD, ThilstedCL, LiingaardMA, 2012. Modification of the API p-y formulation of initial stiffness of sand. Proceedings of the Offshore Site Investigation and Geotechnics: Integrated Technologies–Present and Future, p.465-472.

[7]KharmandaGM, AntypasIR, 2016. Reliability-based design optimization strategy for soil tillage equipment considering soil parameter uncertainty. Advanced Engineering Research, 16(2):136-147.

[8]KhoshnevisanS, GongWP, WangL, et al., 2014. Robust design in geotechnical engineering-an update. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 8(4):217-234.

[9]KhoshnevisanS, WangL, JuangCH, 2017. Response surface-based robust geotechnical design of supported excavation-spreadsheet-based solution. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(1):90-102.

[10]LeeJS, SongJU, HongWT, et al., 2018. Application of time domain reflectometer for detecting necking defects in bored piles. NDT & E International, 100:132-141.

[11]LiHJ, TongLY, LiuSY, et al., 2018. Construction and verification of a unified p-y curve for laterally loaded piles. Bulletin of Engineering Geology and the Environment, 77(3):987-997.

[12]LiJP, ZhangJ, LiuSN, et al., 2015. Reliability-based code revision for design of pile foundations: practice in Shanghai, China. Soils and Foundations, 55(3):637-649.

[13]LiKQ, YinZY, LiuY, 2023. Influences of spatial variability of hydrothermal properties on the freezing process in artificial ground freezing technique. Computers and Geotechnics, 159:105448.

[14]LowBK, TehCI, TangWH, 2001. Stochastic nonlinear p-y analysis of laterally loaded piles. Proceedings of the International Conference on Structural Safety and Reliability.

[15]MOC (Ministry of Construction of the People’s Republic of China), 2008. Technical Code for Building Pile Foundations, JGJ 94-2008. National Standards of the People’s Republic of China(in Chinese).

[16]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2011. Code for Design of Concrete Structures, GB/T 50010-2010. National Standards of the People’s Republic of China(in Chinese).

[17]PengX, LiDQ, CaoZJ, et al., 2017. Reliability-based robust geotechnical design using Monte Carlo simulation. Bulletin of Engineering Geology and the Environment, 76(3):1217-1227.

[18]PhoonKK, CaoZJ, JiJ, et al., 2022. Geotechnical uncertainty, modeling, and decision making. Soils and Foundations, 62(5):101189.

[19]PoulosHG, 2005. Pile behavior—consequences of geological and construction imperfections. Journal of Geotechnical and Geoenvironmental Engineering, 131(5):538-563.

[20]ReeseLC, CoxWR, KoopFD, 1974. Analysis of laterally loaded piles in sand. Proceedings of the Offshore Technology Conference.

[21]SchmoorKA, AchmusM, 2020. Reliability-based evaluation of offshore design approaches for tensile piles in noncohesive soil. International Journal of Offshore and Polar Engineering, 30(2):240-247.

[22]StuedleinAW, NeelyWJ, GurtowskiTM, 2012. Reliability-based design of augered cast-in-place piles in granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(6):709-717.

[23]SunYZ, SunHL, TangC, et al., 2023. Monotonic uplift behavior of anchored pier foundations in soil overlying rock. Journal of Zhejiang University-SCIENCE A, 24(7):569-583.

[24]WangZ, YuY, SunHY, et al., 2020. Robust optimization of the constructional time delay in the design of double-row stabilizing piles. Bulletin of Engineering Geology and the Environment, 79(1):53-67.

[25]XuKJ, PoulosHG, 2000. Measured and predicted axial response of piles with diameter discontinuities. Geotechnical Engineering, 31(3):171-191.

[26]XuZJ, GuoZX, 2021. Experimental study on bearing characteristics and soil deformation of necking pile with cap using transparent soils technology. Advances in Civil Engineering, 2021:6625556.

[27]YuY, LiXM, PanXH, et al., 2020. A robust and efficient method of designing piles for landslide stabilization. Environmental & Engineering Geoscience, 26(4):481-492.

[28]YuYS, LiLL, KongXM, et al., 2024. Deformation and stability of the seawall, considering the strength uncertainty of cement mixing piles. Journal of Zhejiang University-SCIENCE A, 25(6):483-501.

[29]ZhouP, XuJH, XuCJ, et al., 2024. Influence of the penetration of adjacent X-section cast-in-place concrete (XCC) pile on the existing XCC pile in sand. Journal of Zhejiang University-SCIENCE A, 25(7):557-572.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE