Full Text:   <866>

Summary:  <6>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-11-24

Received: 2024-11-10

Revision Accepted: 2025-03-24

Crosschecked: 2025-11-25

Cited: 0

Clicked: 1251

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xinhua YAO

https://orcid.org/0000-0003-0261-3938

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.11 P.1070-1082

http://doi.org/10.1631/jzus.A2400513


Design and fabrication of biomimetic four-region drug-loaded cartilage scaffolds with porous hollow fibers


Author(s):  Yu CHEN, Yuzhe MA, Jianzhong FU, Xinhua YAO

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   yaoxinhuame@zju.edu.cn

Key Words:  Bionic design, 3D printing, Cartilage scaffold, Gradient porous structure, Regulation of mechanical properties, Drug delivery systems


Yu CHEN, Yuzhe MA, Jianzhong FU, Xinhua YAO. Design and fabrication of biomimetic four-region drug-loaded cartilage scaffolds with porous hollow fibers[J]. Journal of Zhejiang University Science A, 2025, 26(11): 1070-1082.

@article{title="Design and fabrication of biomimetic four-region drug-loaded cartilage scaffolds with porous hollow fibers",
author="Yu CHEN, Yuzhe MA, Jianzhong FU, Xinhua YAO",
journal="Journal of Zhejiang University Science A",
volume="26",
number="11",
pages="1070-1082",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400513"
}

%0 Journal Article
%T Design and fabrication of biomimetic four-region drug-loaded cartilage scaffolds with porous hollow fibers
%A Yu CHEN
%A Yuzhe MA
%A Jianzhong FU
%A Xinhua YAO
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 11
%P 1070-1082
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400513

TY - JOUR
T1 - Design and fabrication of biomimetic four-region drug-loaded cartilage scaffolds with porous hollow fibers
A1 - Yu CHEN
A1 - Yuzhe MA
A1 - Jianzhong FU
A1 - Xinhua YAO
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 11
SP - 1070
EP - 1082
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400513


Abstract: 
Articular cartilage, which plays a vital role in joint structure, is susceptible to damage from trauma and degenerative joint diseases. Traditional methods for cartilage treatment often involve complex surgical procedures with limited efficacy. Alternatively, implantable drug-loaded scaffolds are an increasingly attractive cartilage treatment option. To address the challenges of structural and functional compatibility between scaffolds and native cartilage, as well as issues related to drug loading, we design a novel cartilage scaffold with a four-region hollow porous fiber network structure. Using an extrusion-based 3D printing platform, a biphasic silicone ink composed primarily of liquid-phase silicone and solid particles was employed to construct the hollow porous fiber network. Mechanical compression tests demonstrate that the cartilage scaffold has mechanical characteristics similar to those of native cartilage tissue, and ultraviolet spectrophotometry measurements confirm its ability to control drug release. These results showcase the feasibility and effectiveness of the proposed cartilage substitute structure.

仿生四区域药物负载软骨支架的设计与制造

作者:陈语1,2,马宇哲1,2,傅建中1,2,姚鑫骅1,2
机构:1浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310058;2浙江大学,浙江省3D打印工艺与装备重点实验室,中国杭州,310058
目的:关节软骨是关节功能的关键组成部分,但由于外伤和退行性疾病的影响,软骨极易受到损伤。传统的软骨治疗方法通常依赖复杂的手术程序,且疗效有限。作为一种潜在的替代方案,植入式载药支架逐渐成为一种有前景的软骨疾病治疗选择。然而,支架与天然软骨在结构与功能上的兼容性问题以及载药缓释功能的优化,仍然是当前面临的重大挑战。为了解决这些问题,本文提出了一种采用四区域中空多孔纤维网络结构的新型软骨支架设计。
创新点:1.提出了一种具有良好自支撑性能的双相有机硅油墨配方;2.提出了一种软骨支架的仿生设计,使支架具有与天然软骨相似的力学性能;3.软骨支架集成了由中空多孔纤维组成的药物输送系统,保证了稳定的药物释放性能。
方法:1.通过建模仿真,建立软骨支架压缩力学性能的数值模型(图4);2.通过正交实验,确定软骨支架的纤维直径、纤维间距、纤维排列角等结构设计参数(表4);3.使用液相硅胶和固体颗粒组成双相硅胶墨水,并利用挤出式3D打印平台制备支架。
结论:1.设计的仿生四区域中空多孔药物载体支架在结构与功能上高度接近天然软骨,具备良好的应用前景;2.设计的支架具备初始快速释放及后期持续释放的药物释放特性;3.生物相容性实验表明,设计的支架具有良好的生物相容性。

关键词:仿生设计;3D打印;软骨支架;梯度多孔结构;力学性能调控;药物释放系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]CaiJC, ChenY, LiuY, et al., 2022. Capillary imbibition and flow of wetting liquid in irregular capillaries: a 100-year review. Advances in Colloid and Interface Science, 304:102654.

[2]ChenPF, TaoJD, ZhuSA, et al., 2015. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials, 39:114-123.

[3]DaH, JiaSJ, MengGL, et al., 2013. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One, 8(1):e54838.

[4]DuYY, LiuHM, YangQ, et al., 2017. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials, 137:37-48.

[5]GetgoodAMJ, KewSJ, BrooksR, et al., 2012. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen-glycosaminoglycan biopolymer in a caprine model. The Knee, 19(4):422-430.

[6]GuZH, WangJY, FuY, et al., 2023. Smart biomaterials for articular cartilage repair and regeneration. Advanced Functional Materials, 33(10):2212561.

[7]GuiX, PengZ, SongP, et al., 2023. 3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction. Bio-Design and Manufacturing, 6:451-463.

[8]HanG, LeeH, KangJM, et al., 2023. 3D-printed NIR-responsive bullets as multifunctional nanodrug platforms for image-guided local chemo-photothermal therapy. Chemical Engineering Journal, 477:147083.

[9]HuaYJ, HuoYY, BaiBS, et al., 2022. Fabrication of biphasic cartilage-bone integrated scaffolds based on tissue-specific photo-crosslinkable acellular matrix hydrogels. Materials Today Bio, 17:100489.

[10]KimSY, HanG, HwangDB, et al., 2021. Design and usability evaluations of a 3D-printed implantable drug delivery device for acute liver failure in preclinical settings. Advanced Healthcare Materials, 10(14):2100497.

[11]KimYH, KanczlerJM, LanhamS, et al., 2024. Biofabrication of nano-composite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cells. Bio-Design and Manufacturing, 7:121-136.

[12]KwonH, BrownWE, LeeCA, et al., 2019. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nature Reviews Rheumatology, 15(9):550-570.

[13]LevingstoneTJ, RameshA, BradyRT, et al., 2016a. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials, 87:69-81.

[14]LevingstoneTJ, ThompsonE, MatsikoA, et al., 2016b. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomaterialia, 32:149-160.

[15]LiXS, ZhaoY, ZhaoC, 2021. Applications of capillary action in drug delivery. iScience, 24(7):102810.

[16]LiuH, ChengYL, ChenJJ, et al., 2018. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 73:103-111.

[17]LiuJX, GaoYL, ZhangGR, et al., 2019. Follow-up study on autogenous osteochondral transplantation for cartilage defect of knee joint. China Journal of Orthopaedics and Traumatology, 32(4):346-349 (in Chinese).

[18]LiuJY, LiL, SuoHR, et al., 2019. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials & Design, 171:107708.

[19]MaldaJ, GrollJ, van WeerenPR, 2019. Rethinking articular cartilage regeneration based on a 250-year-old statement. Nature Reviews Rheumatology, 15(10):571-572.

[20]ParisiC, SalvatoreL, VeschiniL, et al., 2020. Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration. Journal of Tissue Engineering, 11:2041731419896068.

[21]PattnaikA, SanketAS, PradhanS, et al., 2023. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials, 296:122078.

[22]SchizasN, SavvidouO, TriantafyllopoulosI, et al., 2019. Adjuvant therapies for the enhancement of microfracture technique in cartilage repair. Orthopedic Reviews, 11(3):7950.

[23]ShenCY, WangJ, LiGF, et al., 2024. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioactive Materials, 35:429-444.

[24]SinghAK, PramanikK, BiswasA, 2024. Constructing a biofunctional-ized 3D-printed gelatin/sodium alginate/chitosan tri-polymer com-plex scaffold with improvised biological and mechanical properties for bone-tissue engineering. Bio-Design and Manufacturing, 7:57-73.

[25]SoleymaniM, MotieeES, KarbasiS, et al., 2024. Evaluation of the effects of decellularized umbilical cord Wharton’s Jelly ECM on polyhydroxy butyrate electrospun scaffolds: a new strategy for cartilage tissue engineering. Materials Today Chemistry, 39:102145.

[26]SunZX, BonassarLJ, PutnamD, 2020. Influence of block length on articular cartilage lubrication with a diblock bottle-brush copolymer. ACS Applied Materials & Interfaces, 12(1):330-337.

[27]WangMK, WuY, LiGF, et al., 2024. Articular cartilage repair biomaterials: strategies and applications. Materials Today Bio, 24:100948.

[28]WangWZ, LiH, SongP, et al., 2024. Photo-crosslinked integrated triphasic scaffolds with gradient composition and strength for osteochondral regeneration. Journal of Materials Chemistry B, 12(5):1271-1284.

[29]WangZ, WangX, HuangY, et al., 2024. Cav3.3-mediated endochondral ossification in a three-dimensional bioprinted GelMA hydrogel. Bio-Design and Manufacturing, 7:983-999.

[30]YangHX, ZhengMJ, ZhangYY, et al., 2024. Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation. Biomaterials Translational, 5(1):59-68.

[31]YangSH, WuHM, PengC, et al., 2024. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications. Biomaterials Translational, 5(3):274-299.

[32]ZhangX, YanZH, GuanGT, et al., 2022. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. Journal of Biomaterials Applications, 36(6):1019-1032.

[33]ZhangYB, LiuXC, ZengLD, et al., 2019. Polymer fiber scaffolds for bone and cartilage tissue engineering. Advanced Functional Materials, 29(36):1903279.

[34]ZhouBT, XuPS, LiXZ, et al., 2005. Determination of gallium citrate injection by UV/VIS spectrophotometry. Central South Pharmacy, 3(1):30-31 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE