CLC number: R778
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-10-14
Cited: 2
Clicked: 6490
Yan-shu Yu, Lin-ling Wang, Ye Shen, Maurice K. H. Yap, Shea-ping Yip, Wei Han. Investigation of the association between all-trans-retinol dehydrogenase (RDH8) polymorphisms and high myopia in Chinese[J]. Journal of Zhejiang University Science B, 2010, 11(11): 836-841.
@article{title="Investigation of the association between all-trans-retinol dehydrogenase (RDH8) polymorphisms and high myopia in Chinese",
author="Yan-shu Yu, Lin-ling Wang, Ye Shen, Maurice K. H. Yap, Shea-ping Yip, Wei Han",
journal="Journal of Zhejiang University Science B",
volume="11",
number="11",
pages="836-841",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000001"
}
%0 Journal Article
%T Investigation of the association between all-trans-retinol dehydrogenase (RDH8) polymorphisms and high myopia in Chinese
%A Yan-shu Yu
%A Lin-ling Wang
%A Ye Shen
%A Maurice K. H. Yap
%A Shea-ping Yip
%A Wei Han
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 11
%P 836-841
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000001
TY - JOUR
T1 - Investigation of the association between all-trans-retinol dehydrogenase (RDH8) polymorphisms and high myopia in Chinese
A1 - Yan-shu Yu
A1 - Lin-ling Wang
A1 - Ye Shen
A1 - Maurice K. H. Yap
A1 - Shea-ping Yip
A1 - Wei Han
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 11
SP - 836
EP - 841
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000001
Abstract: Retinoic acid level in the retina/choroid is altered in induced myopia models. all-trans-retinol dehydrogenase (RDH8) is an important enzyme of retinoic acid metabolism. This study aimed to investigate the association of the RDH8 gene with high myopia. Three single nucleotide polymorphisms (SNPs) [RDH851 (rs2233789), RDH8E5a (rs1644731), and RDH855b (rs3760753)] were selected, based on the linkage disequilibrium pattern of RDH8 from a previous study, and genotyped for 160 Han Chinese nuclear families with highly myopic (−10 diopters or worse) offspring as well as in an independent group with 166 highly myopic cases (−10 diopters or worse) and 211 controls. Family-based association analysis was performed using the family-based association test (FBAT) package, and genotype relative risk (GRR) was calculated using the GenAssoc program. Population-based association analysis was performed using Chi-square test. These SNPs were in linkage equilibrium with each other. SNPs RDH851 (rs2233789) and RDH8E5a (rs1644731) both did not show association with high myopia. SNP RDH855b (rs3760753) demonstrated significant association (P=0.0269) with a GRR of 0.543 (95% confidence interval=0.304–0.968, P=0.038). The association became statistically insignificant, however, after multiple comparison correction. Haplotype analysis did not show a significant association either. Population-based association analysis also showed no significant association (P>0.05). Our family- and population-based data both suggest that the RDH8 gene is unlikely to be associated with high myopia in Chinese.
[1]Bitzer, M., Feldkaemper, M., Schaeffel, F., 2000. Visually induced changes in components of the retinoic acid system in fundal layers of the chick. Exp. Eye Res., 70(1):97-106.
[2]Cordell, H.J., Barratt, B.J., Clayton, D.G., 2004. Case/ pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet. Epidemiol., 26(3):167-185.
[3]Curtin, B.J., 1985. The Myopias: Basic Science and Clinical Management. Harper & Row, Philadelphia, p.102-105.
[4]Ewens, W.J., Spielman, R.S., 1995. The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet., 57(2):455-464.
[5]Farbrother, J.E., Kirov, G., Owen, M.J., Guggenheim, J.A., 2004. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest. Ophthalmol. Vis. Sci., 45(9):2873-2878.
[6]Goss, D.A., van Veen, H.G., Rainey, B.B., Feng, B., 1997. Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students. Optom. Vis. Sci., 74(7):489-495.
[7]Han, W., Yip, S.P., Wang, J., Yap, M.K.H., 2004. Using denaturing HPLC for SNP discovery and genotyping, and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydrogenase (RDH8) gene. J. Hum. Genet., 49(1):16-23.
[8]Han, W., Yap, M.K., Wang, J., Yip, S.P., 2006. Family-based association analysis of hepatocyte growth factor (HGF) gene polymorphisms in high myopia. Invest. Ophthalmol. Vis. Sci., 47(6):2291-2299.
[9]Hung, L.F., Crawford, M.L., Smith, E.L., 1995. Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat. Med., 1(8):761-765.
[10]Iribarren, R., Balsa, A., Armesto, A., Chiaradia, P., Despontin, L., Fornaciari, A., Pfortner, T., 2005. Family history of myopia is not related to the final amount of refractive error in low and moderate myopia. Clin. Exp. Ophthalmol., 33(3):274-278.
[11]Laird, N.M., Horvath, S., Xu, X., 2000. Implementing a unified approach to family-based tests of association. Genet. Epidemiol., 19(S1):S36-S42.
[12]Lyhne, N., Sjølie, A.K., Kyvik, K.O., Green, A., 2001. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year-old twins. Br. J. Ophthalmol., 85(12):1470-1476.
[13]McFadden, S.A., Howlett, M.H., Mertz, J.R., 2004. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res., 44(7):643-653.
[14]Mertz, J.R., Wallman, J., 2000. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp. Eye Res., 70(4):519-527.
[15]Morgan, I.G., 2003. The biological basis of myopic refractive error. Clin. Exp. Optom., 86(5):276-288.
[16]Norton, T.T., Siegwart, J.T.Jr., 1995. Animal models of emmetropisation: matching axial length to the focal plane. J. Am. Optom. Assoc., 66(7):405-414.
[17]Rattner, A., Smallwood, P.M., Nathans, J., 2000. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem., 275(15):11034-11043.
[18]Risch, N., 2000. Searching for genetic determinants in the new millennium. Nature, 405(6788):847-856.
[19]Saari, J.C., Garwin, G.G., van Hooser, J.P., Palczewski, K., 1998. Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Res., 38(10):1325-1333.
[20]Saw, S.M., 2003. A synopsis of the prevalence rates and environmental risk factors for myopia. Clin. Exp. Optom., 86(5):289-294.
[21]Saw, S.M., Chua, W.H., Wu, H.M., Yap, E., Chia, K.S., Stone, R.A., 2000. Myopia: gene-environment interaction. Ann. Acad. Med. Singapore, 29(3):290-297.
[22]Seko, Y., Shimizu, M., Tokoro, T., 1998. Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res., 30(6):361-367.
[23]Tang, W.C., Yap, M.K., Yip, S.P., 2008. A review of current approaches to identifying human genes involved in myopia. Clin. Exp. Optom., 91(1):4-22.
[24]Xu, L., Li, J., Cui, T., Hu, A., Fan, G., Zhang, R., Yang, H., Sun, B., Jonas, J.B., 2005. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology, 112(10):1676-1683.
[25]Yoshino, Y., Funata, M., Akazawa, Y., Tokoro, T., 1997. Visual deprivation myopia with translucent and black goggles. Ophthalmologica, 211(1):4-7.
[26]Young, T.L., 2009. Molecular genetics of human myopia: an update. Optom. Vis. Sci., 86(1):E8-E22.
[27]Zhang, S., Sha, Q., Chen, H.S., Dong, J., Jiang, R., 2003. Transmission/disequilibrium test based on haplotype sharing for tightly linked markers. Am. J. Hum. Genet., 73(3):566-579.
Open peer comments: Debate/Discuss/Question/Opinion
<1>