CLC number: Q96; Q51
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-01-14
Cited: 6
Clicked: 6343
Jia-ying Zhu, Pu Yang, Guo-xing Wu. Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata[J]. Journal of Zhejiang University Science B, 2011, 12(2): 103-115.
@article{title="Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata",
author="Jia-ying Zhu, Pu Yang, Guo-xing Wu",
journal="Journal of Zhejiang University Science B",
volume="12",
number="2",
pages="103-115",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000275"
}
%0 Journal Article
%T Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata
%A Jia-ying Zhu
%A Pu Yang
%A Guo-xing Wu
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 2
%P 103-115
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000275
TY - JOUR
T1 - Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata
A1 - Jia-ying Zhu
A1 - Pu Yang
A1 - Guo-xing Wu
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 2
SP - 103
EP - 115
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000275
Abstract: prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the host’s melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the host’s melanization.
[1]Asgari, S., Zhang, G., Zareie, R., Schmidt, O., 2003. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol., 33(10):1017-1024.
[2]Ashida, M., 1971. Purification and characterization of pre-phenoloxidase from hemolymph of the silkworm Bombyx mori. Arch. Biochem. Biophys., 144(2):749-762.
[3]Ashida, M., Brey, P.T., 1995. Role of the integument in insect defense: prophenol oxidase cascade in the cuticular matrix. PNAS, 92(23):10698-10702.
[4]Beck, M.H., Strand, M.R., 2007. A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. PNAS, 104(49):19267-19272.
[5]Beck, M., Theopold, U., Schmidt, O., 2000. Evidence for serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. J. Insect Physiol., 46(9):1275-1283.
[6]Beckage, N.E., Gelman, D.B., 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol., 49(1):299-330.
[7]Beckage, N.E., Metcalf, J.S., Nesbit, D.J., Schleifer, K.W., Zetlan, S.R., de Buron, I., 1990. Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem., 20(3):285-294.
[8]Béliveau, C., Laforge, M., Cusson, M., Bellemare, G., 2000. Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm Choristoneura fumiferana. J. Gen. Virol., 81(7):1871-1880.
[9]Brodeur, J., Boivin, G., 2004. Functional ecology of immature parasitoids. Annu. Rev. Entomol., 49(1):27-49.
[10]Burmester, T., Scheller, K., 1996. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and Dipteran Arylphorin receptor. J. Mol. Evol., 42(6):713-728.
[11]Cerenius, L., Söderhäll, K., 2004. The prophenoloxidase-activating system in invertebrates. Immunol. Rev., 198(1):116-126.
[12]Cerenius, L., Lee, B.L., Söderhäll, K., 2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol., 29(6):263-271.
[13]Colinet, D., Dubuffet, A., Cazes, D., Moreau, S., Drezen, J.M., Poirié, M., 2009. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol., 33(5):681-689.
[14]Cui, L., Luckhart, S., Rosenberg, R., 2000. Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi. Insect Mol. Biol., 9(2):127-137.
[15]Cusson, M., Laforge, M., Miller, D., Cloutier, C., Stoltz, D., 2000. Functional significance of parasitism-induced suppression of juvenile hormone esterase activity in developmentally delayed Choristoneura fumiferana larvae. Gen. Comp. Endocrinol., 117(3):343-354.
[16]de Graaf, D.C., Aerts, M., Brunain, M., Desjardins, C.A., Jacobs, F.J., Werren, J.H., Devreese, B., 2010. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol. Biol., 19(S1):11-26.
[17]Dodds, A.W., Day, A.J., 1996. Complement-Like Proteins in Invertebrates. In: Söderhäll, K., Iwanaga, S., Vasta, G.R. (Eds.), New Directions in Invertebrate Immunology. SOS Publications, Fair Haven, NJ, USA, p.303-341.
[18]Doucet, D., Cusson, M., 1996. Role of calyx fluid in alterations of immunity in Choristoneura fumiferana larvae parasitized by Tranosema rostrale. Comp. Biochem. Physiol., 114A(4):311-317.
[19]Doucet, D., Béliveau, C., Dowling, A., Simard, J., Feng, Q., Krell, P.J., Cusson, M., 2008. Prophenoloxidases 1 and 2 from the spruce budworm, Choristoneura fumiferana: molecular cloning and assessment of transcriptional regulation by a polydnavirus. Arch. Insect Biochem. Physiol., 67(4):188-201.
[20]Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G., Brunak, S., 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340(4):783-795.
[21]Fisher, C.W., Brady, U.E., 1980. Increased rate of melanization in hemolymph of American cockroaches (Periplaneta americana) and house crickets (Acheta domesticus) intoxicated by insecticides. Cell. Mol. Life Sci., 36(1):93-94.
[22]Fujimoto, K., Okino, N., Kawabata, S.I., Iwanaga, S., Ohnishi, E., 1995. Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster. PNAS, 92(17):7769-7773.
[23]Gaykema, W.P.J., Hol, W.G.J., Vereijken, J.M., Soeter, N.M., Bak, H.J., Beintema, J.J., 1984. 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus hemocyanin. Nature, 309(5963):23-29.
[24]Hartzer, K.L., Zhu, K.Y., Baker, J.E., 2005. Phenoloxidase in larvae of Plodia interpunctella (Lepidoptera: Pyralidae): molecular cloning of the proenzyme cDNA and enzyme activity in larvae paralyzed and parasitized by Habrobracon hebetor (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol., 59(2):67-79.
[25]Huang, L.H., Christensen, B.M., Chen, C.C., 2001. Molecular cloning of a second prophenoloxidase cDNA from the mosquito Armigeres subalbatus: prophenoloxidase expression in blood-fed and microfilariae-inoculated mosquitoes. Insect Mol. Biol., 10(1):87-96.
[26]Hughes, A.L., 1999. Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics, 49(2):106-114.
[27]Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P.S., Sigrist, C.J., 2008. The 20 years of PROSITE. Nucleic Acids Res., 36(Suppl. 1):D245-D249.
[28]Jaenicke, E., Decker, H., 2004. Functional changes in the family of type 3 copper proteins during evolution. Chem. BioChem., 5(2):163-169.
[29]Kitano, H., 1974. Effects of the parasitization of a braconid, Apanteles, on the blood of its host, Pieris. J. Insect Physiol., 20(2):315-327.
[30]Kitano, H., 1982. Effect of the venom of the gregarious parasitoid Apanteles glomeratus on its hemocytic encapsulation by the host, Pieris. J. Invertebr. Pathol., 40(1):61-67.
[31]Kitano, H., Nakatsuji, N., 1978. Resistance of Apanteles eggs to the haemocytic encapsulation by their habitual host, Pieris. J. Insect Physiol., 24(3):261-271.
[32]Kitano, H., Wago, H., Arakawa, T., 1990. Possible role of teratocytes of the gregarious parasitoid, Cotesia (=Apanteles) glomerata in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch. Insect Biochem. Physiol., 13(3-4):177-185.
[33]Kopácek, P., Weise, C., Götz, P., 1995. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme. Insect Biochem. Mol. Biol., 25(10):1081-1091.
[34]Kraaijeveld, A.R., Godfray, H.C., 2009. Evolution of host resistance and parasitoid counter-resistance. Adv. Parasitol., 70:257-280.
[35]Laing, J.E., Levin, D.B., 1982. A review of the biology and a bibliography of Apanteles glomeratus (L.) (Hymenoptera: Braconidae). Blocontrol News Inform., 3:7-23.
[36]Lavine, M.D., Beckage, N.E., 1995. Polydvaviruses-potent mediators of host insect immune dysfunction. Parasitol. Today, 11(10):368-378.
[37]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods, 25(4):402-408.
[38]Lourenço, A.P., Zufelato, M.S., Bitondi, M.M., Simões, Z.L., 2005. Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochem. Mol. Biol., 35(6):541-552.
[39]Madanagopal, N., Kim, Y., 2006. Parasitism by Cotesia glomerata induces immunosuppression of Pieris rapae: effects of ovarian protein and polydnavirus. J. Asia-Pacific Entomol., 9(4):339-346.
[40]Moreau, S.J., Guillot, S., 2005. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol., 35(11):1209-1223.
[41]Nappi, A.J., Christensen, B.M., 2005. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem. Mol. Biol., 35(5):443-459.
[42]Nappi, A., Poirié, M., Carton, Y., 2009. The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps. Adv. Parasitol., 70:99-121.
[43]Ockroy, K.S., Webb, T.J., Trenczek, T.E., Dorn, S., 2002. Comparison of parasitism by Cotesia glomerata with bacterial infection and wounding in Pieris brassicae: induction of new haemolymph polypeptides and changes in humoral immune response. J. Invertebr. Pathol., 81(1):12-18.
[44]Olivares, C., Solano, F., 2009. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res., 22(6):750-760.
[45]Park, D.S., Shin, S.W., Kim, M.G., Park, S.S., Lee, W.J., Brey, P.T., Park, H.Y., 1998. Isolation and characterization of the cDNA encoding the prophenoloxidase of fall webworm, Hyphantria cunea. Insect Biochem. Mol. Biol., 27(11):983-992.
[46]Parkinson, N.M., Weaver, R.J., 1999. Noxious components of venom from the pupa-specific parasitoid Pimpla hypochondriaca. J. Invertebr. Pathol., 73(1):74-83.
[47]Pennacchio, F., Strand, M.R., 2006. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol., 51(1):233-258.
[48]Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C.P., 1985. Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol., 97:183-350.
[49]Richards, E.H., Edwards, J.P., 2003. Parasitism of Lacanobia oleracea (Lepidoptera) by the ectoparasitoid, Eulophus pennicornis, is associated with a reduction in host haemolymph phenoloxidase activity. Comp. Biochem. Physiol., 127B(3):289-298.
[50]Rivers, D.B., Hink, W.F., Denlinger, D.L., 1993. Toxicity of the venom from Nasonia vitripennis (Hymenoptera: Pteromalidae) toward fly hosts, nontarget insects, different developmental stage, and cultured insect cells. Toxicon, 31(6):755-765.
[51]Shelby, K.S., Webb, B.A., 1999. Polydnavirus-mediated suppression of insect immunity. J. Insect Physiol., 45(5):507-514.
[52]Shelby, K.S., Popham, H.J., 2008. Cloning and characterization of the secreted hemocytic prophenoloxidases of Heliothis virescens. Arch. Insect Biochem. Physiol., 69(3):127-142.
[53]Shelby, K.S., Adeyeye, O.A., Okot-Kotber, B.M., Webb, B.A., 2000. Parasitism-linked block of host plasma melanization. J. Invert. Pathol., 75(3):218-225.
[54]Söderhäll, K., Cerenius, L., Johansson, M.W., 1994. The prophenoloxidase activating system and its role in invertebrate defence. Ann. NY Acad. Sci., 712:155-161.
[55]Sritunyalucksana, K., Söderhäll, K., 2000. The proPO and clotting system in crustaceans. Aquaculture, 191(1-3):53-69.
[56]Sritunyalucksana, K., Cerenius, L., Söderhäll, K., 1999. Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol., 23(3):179-186.
[57]Stoltz, D.B., Cook, D.I., 1983. Inhibition of host phenoloxidase activity by parasitoid hymenoptera. Cell. Mol. Life Sci., 39(9):1022-1024.
[58]Taft, A.S., Chen, C.C., Li, J., Christensen, B.M., 2001. Molecular cloning of two prophenoloxidase genes from the mosquito Aedes aegypti. Insect Mol. Biol., 10(1):97-103.
[59]Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596-1599.
[60]Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24):4876-4882.
[61]Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., Zenteno, E., 2009. Review: immunity mechanisms in crustaceans. Innate Immun., 15(3):179-188.
[62]Webb, B.A., Luckhart, S., 1994. Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens. Arch. Insect Biochem. Physiol., 26(2-3):147-163.
[63]Yu, R.X., Chen, Y.F., Chen, X.X., Huang, F., Lou, Y.G., Liu, S.S., 2007. Effects of venom/calyx fluid from the endoparasitic wasp Cotesia plutellae on the hemocytes of its host Plutella xylostella in vitro. J. Insect Physiol., 53(1):22-29.
[64]Zhu, J.Y., Ye, G.Y., Hu, C., 2008. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon, 51(8):1391-1399.
[65]Zhu, J.Y., Ye, G.Y., Qi, F., Hu, C., 2009a. Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae). J. Zhejiang Univ.-Sci. B, 10(6):445-453.
[66]Zhu, J.Y., Ye, G.Y., Dong, S.Z., Fang, Q., Hu, C., 2009b. Venom of Pteromalus puparum (Hymenoptera: Pteromalidae) induced endocrine changes in the hemolymph of its host, Pieris rapae (Lepidoptera: Pieridae). Arch. Insect Biochem. Physiol., 71(1):45-53.
[67]Zhu, J.Y., Qi, F., Ye, G.Y., Hu, C., 2011. Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum. J. Zhejiang Univ.-Sci. B, 12(2):93-102.
Open peer comments: Debate/Discuss/Question/Opinion
<1>