Full Text:   <3623>

Summary:  <2423>

CLC number: Q66; R318.01; R333.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-13

Cited: 4

Clicked: 7800

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.375-381

http://doi.org/10.1631/jzus.B1300121


Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli*


Author(s):  Ying Zhu1, Yi Zheng2, Yuan-yuan Shen1, Xin Chen1, Xin-yu Zhang1, Hao-ming Lin1, Yan-rong Guo1, Tian-fu Wang1, Si-ping Chen1

Affiliation(s):  1. National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518160, China; more

Corresponding email(s):   chensiping@szu.edu.cn

Key Words:  Biological mechanics, Rheological properties, Liver fibrosis, Viscoelasticity, Shear modulus, Elasticity, Viscosity, Zener model, Voigt model


Ying Zhu, Yi Zheng, Yuan-yuan Shen, Xin Chen, Xin-yu Zhang, Hao-ming Lin, Yan-rong Guo, Tian-fu Wang, Si-ping Chen. Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli[J]. Journal of Zhejiang University Science B, 2014, 15(4): 375-381.

@article{title="Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli",
author="Ying Zhu, Yi Zheng, Yuan-yuan Shen, Xin Chen, Xin-yu Zhang, Hao-ming Lin, Yan-rong Guo, Tian-fu Wang, Si-ping Chen",
journal="Journal of Zhejiang University Science B",
volume="15",
number="4",
pages="375-381",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300121"
}

%0 Journal Article
%T Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli
%A Ying Zhu
%A Yi Zheng
%A Yuan-yuan Shen
%A Xin Chen
%A Xin-yu Zhang
%A Hao-ming Lin
%A Yan-rong Guo
%A Tian-fu Wang
%A Si-ping Chen
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 375-381
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300121

TY - JOUR
T1 - Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli
A1 - Ying Zhu
A1 - Yi Zheng
A1 - Yuan-yuan Shen
A1 - Xin Chen
A1 - Xin-yu Zhang
A1 - Hao-ming Lin
A1 - Yan-rong Guo
A1 - Tian-fu Wang
A1 - Si-ping Chen
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 375
EP - 381
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300121


Abstract: 
The process of liver fibrosis changes the rheological properties of liver tissue. This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli. Here two viscoelastic models, the zener model and voigt model, were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage. The results demonstrate that moderate fibrosis (≤F2) has a good correlation with liver elasticity%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>viscoelasticity. The mean Zener elasticity E 1 increases from (0.452±0.094) kPa (F0) to (1.311±0.717) kPa (F2), while the mean Voigt elasticity E increases from (0.618±0.089) kPa (F0) to (1.701±0.844) kPa (F2). The mean Zener viscosity increases from (3.499±0.186) Pa·s (F0) to (4.947±1.811) Pa·s (F2) and the mean Voigt viscosity increases from (3.379±0.316) Pa·s (F0) to (4.625±1.296) Pa·s (F2). Compared with viscosity, the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used. Therefore, the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.

利用剪切黏弹性模量对大鼠肝纤维化流变特性进行分析和建模

研究目的:肝脏的纤维化进程改变肝脏组织的流变属性。
创新要点:本文利用剪切黏弹性模量描绘并比较了大鼠肝脏F0期到F4期的纤维化过程。
研究方法:两个黏弹性模型,即Zener模型和Voigt模型用于解释流变力学测试得到的实验数据,由此得到每个纤维化分期的肝脏弹性和黏性值。
重要结论:肝脏中度纤维化(≤F2期)与黏弹性值密切相关。Zener模型的弹性均值E1从F0期的(0.452±0.094) kPa增加到F2期的(1.311±0.717) kPa,而Voigt模型的弹性均值E从F0期的(0.618±0.089) kPa增加到 F2期的(1.701±0.844) kPa。Zener模型的黏性均值从F0期的(3.499±0.186) Pa•s 增加到F2期的(4.947±1.811) Pa•s,而Voigt模型的黏性均值从F0期的(3.379±0.316) Pa•s 增加到F2期的(4.625±1.296) Pa•s。无论选用哪个黏弹性模型,在F1期和F2期,肝脏弹性值的标准差比黏性值的标准差变化要小。因此,测得的弹性比黏性更有效地区分肝纤维化F0期到F2期。

关键词:生物力学;流变属性;肝纤维化;黏弹性;剪切模量;弹性;黏性;Zener模型;Voigt模型

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Asbach, P., Klatt, D., Hamhaber, U., 2008. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med, 60(2):373-379. 


[2] Barry, C.T., Mills, B., Hah, Z., 2012. Shear wave dispersion measures liver steatosis. Ultrasound Med Biol, 38(2):175-182. 


[3] Catheline, S., Gennisson, J.L., Delon, G., 2004. Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am, 116(6):3734-3741. 


[4] Chatelin, S., Oudry, J., Prichon, N., 2011.  In vivo liver tissue mechanical properties transient elastography: comparison with dynamic mechanical analysis. Biorheology, 48(2):75-88. 


[5] Chen, K., Yao, A., Zheng, E.E., 2012. Shear wave dispersion ultrasound vibrometry based on a different mechanical model for soft tissue characterization. J Ultrasound Med, 31(2):2001-2011. 


[6] Chen, S., Fatemi, M., Greenleaf, J.F., 2004. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am, 115(6):2781-2785. 


[7] Chen, S., Urban, M.W., Pislaru, C., 2009. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrasonics Ferroelectr Freq Control, 56(1):55-62. 


[8] Chen, S., Sanchez, W., Callstrom, M.R., 2013. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology, 266(3):964-970. 


[9] Chen, X., Shen, Y., Zheng, Y., 2013. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model. Ultrasound Med Biol, 39(11):2091-2102. 


[10] French METAVIR Cooperative Study Group, 1994. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology, 20(1):15-20. 


[11] Fung, Y.C., 1993.  Biomechanics: Mechanical Properties of Living Tissues. Springer,New York :


[12] Gennisson, J.L., Deffieux, T., Mac, E., 2010. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol, 36(5):789-801. 


[13] Huwart, L., Sempoux, C., Salameh, N., 2007. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology, 245(2):458-466. 


[14] Joseph, D.D., 1990.  Fluid Dynamics of Viscoelastic Liquids. Springer,Berlin :


[15] Kiss, M.Z., Varghese, T., Hall, T.J., 2004. Viscoelasticity characterization of in vitro canine tissue. Physics Med Biol, 49(18):4207-4218. 


[16] Klatt, D., Friedrich, C., Korth, Y., 2010. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology, 47(2):133-141. 


[17] Macosko, C.W., 1994.  Rheology: Principles, Measurements, and Applications. Wiley-VCH,New York :

[18] Mitri, F.G., Urban, M.W., Fatemi, M., 2011. Shear wave dispersion ultrasonic vibrometry for measuring prostate shear stiffness and viscosity: an in vitro pilot study. IEEE Trans Biomed Eng, 58(2):235-242. 


[19] Orescanin, M., Insana, M.F., 2010. Shear modulus estimation with vibrating needle stimulation. IEEE Trans Ultrasonics Ferroelectr Freq Control, 57(6):1358-1366. 


[20] Yeh, W., Li, P., Jeng, Y., 2002. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol, 28(4):467-474. 


[21] Zheng, Y., Chen, S., Tan, W., 2007. Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter. IEEE Trans Ultrasonics Ferroelectr Freq Control, 54(2):290-300. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE