CLC number: Q291
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-11-07
Cited: 6
Clicked: 4712
Xiao-dong Deng, Jia-jia Cai, Xiao-wen Fei. Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii[J]. Journal of Zhejiang University Science B, 2013, 14(12): 1121-1131.
@article{title="Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii",
author="Xiao-dong Deng, Jia-jia Cai, Xiao-wen Fei",
journal="Journal of Zhejiang University Science B",
volume="14",
number="12",
pages="1121-1131",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300180"
}
%0 Journal Article
%T Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii
%A Xiao-dong Deng
%A Jia-jia Cai
%A Xiao-wen Fei
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 12
%P 1121-1131
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300180
TY - JOUR
T1 - Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii
A1 - Xiao-dong Deng
A1 - Jia-jia Cai
A1 - Xiao-wen Fei
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 12
SP - 1121
EP - 1131
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300180
Abstract: Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%–17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%–21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.
[1]Brindley, D.N., 1984. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog. Lipid Res., 23(3):115-133.
[2]Brindley, D.N., 2004. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J. Cell Biochem., 92(5):900-912.
[3]Carman, G.M., 1997. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli. BBA-Lipid. Lipid Metab., 1348(1-2):45-55.
[4]Carman, G.M., Henry, S.A., 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res., 38(5-6):361-399.
[5]Chae, M., Han, G.S., Carman, G.M., 2012. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. J. Biol. Chem., 287(48):40186-40196.
[6]Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q., 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth., 77(1):41-47.
[7]Chou, K.C., 2013. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 9(6):1092-1100.
[8]Chou, K.C., Shen, H.B., 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3(2):153-162.
[9]Chou, K.C., Shen, H.B., 2010a. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE, 5(4):e9931.
[10]Chou, K.C., Shen, H.B., 2010b. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2(10):1090-1103.
[11]Chou, K.C., Shen, H.B., 2010c. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 5(6):e11335.
[12]Chou, K.C., Wu, Z.C., Xiao, X., 2011. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 6(3):e18258.
[13]Chou, K.C., Wu, Z.C., Xiao, X., 2012. iLoc-Hum: using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 8(2):629-641.
[14]Deng, X.D., Li, Y.J., Fei, X.W., 2011. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii. Biomass Bioenerg., 35(3):1811-1817.
[15]Deng, X.D., Gu, B., Li, Y.J., Hu, X.W., Guo, J.C., Fei, X.W., 2012. The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol. Plant, 5(4):945-947.
[16]Exton, J.H., 1994. Phosphatidylcholine breakdown and signal transduction. BBA-Lipid. Lipid Metab., 1212(1):26-42.
[17]Fei, X.W., Deng, X.D., 2007. A novel Fe deficiency responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. Plant Cell Physiol., 48(10):1496-1503.
[18]Gao, C.F., Xiong, W., Zhang, Y.L., Yuan, W.Q., Wu, Q.Y., 2008. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonace. J. Microbiol. Meth., 75(3):437-440.
[19]Hans, G.S., Wu, W.I., Carman, G.M., 2006. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem., 281:9210-9218.
[20]Harris, E.H., 1989. The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA.
[21]Heinonen, J.K., Lahti, R.J., 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem., 113(2):313-317.
[22]Howe, A.G., McMaster, C.R., 2006. Regulation of phosphatidylcholine homeostasis by Sec14. Can. J. Physiol. Pharm., 84(1):29-38.
[23]Huang, G.H., Chen, G., Chen, F., 2009. Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg., 33(10):1386-1392.
[24]Kindle, K.L., 1990. High frequency nuclear transformation of Chlamydomonas reinhardtii. PNAS, 87(3):1228-1232.
[25]Klug, R.M., Benning, C., 2001. Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl) homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. PNAS, 98(10):5910-5915.
[26]Li, Y.J., Fei, X.W., Deng, X.D., 2012. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenerg., 42:199-211.
[27]Liu, B., Benning, C., 2013. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotech., 24(2):300-309.
[28]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402-408.
[29]Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Maréchal-Drouard, L., et al., 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848):245-250.
[30]Nanjundan, M., Possmayer, F., 2003. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am. J. Physiol. Lung Cell Mol. Physiol., 284:L1-L23.
[31]Phan, J., Reue, K., 2005. Lipin, a lypodystrophy and obesity gene. Cell Metab., 1(1):73-83.
[32]Pierrugues, O., Brutesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G.M., Thuriaux, P., Kazmaier, M., 2001. Lipid phosphate phosphatases in Arabidopsis regulation of the AtLPP1 gene in response to stress. J. Biol. Chem., 276(23):20300-20308.
[33]Sambrook, J., Russell, D.W., 2001. Molecular Cloning: a Laboratory Manual (3-Volume Set). Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.
[34]Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., Siniossoglou, S., 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J., 24(11):1931-1941.
[35]Sciorra, V.A., Morris, A.J., 2002. Roles for lipid phosphate phosphatases in regulation of cellular signaling. BBA-Mol. Cell Biol. Lipids, 1582(1-3):45-51.
[36]Smith, S.W., Weiss, S.B., Kennedy, E.P., 1957. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem., 228:915-922.
[37]Sorger, D., Daum, G., 2003. Triacylglycerol biosynthesis in yeast. Appl. Microbiol. Biotechnol., 61:289-299.
[38]Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8):1596-1599.
[39]Testerink, C., Munnik, T., 2005. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci., 10(8):368-375.
[40]Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., 2005. Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering. Biochem. Biophys. Res. Commun., 327(4):993-998.
[41]Ullah, A.H.J., Sethumadhavan, K., Shockey, J., 2012. Measuring phosphatidic acid phosphohydrolase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods. Adv. Biol. Chem., 2(4):416-421.
[42]Wu, Z.C., Xiao, X., Chou, K.C., 2011. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. BioSyst., 7:3287-3297.
Open peer comments: Debate/Discuss/Question/Opinion
<1>