Full Text:   <4298>

Suppl. Mater.: 

CLC number: X522

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-06-19

Cited: 2

Clicked: 7584

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.7 P.670-680

http://doi.org/10.1631/jzus.B1400003


Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China* #


Author(s):  Jun Zhao1,2, Xin Zhao2,3, Lei Chao2, Wei Zhang2, Tao You2, Jie Zhang1

Affiliation(s):  1. State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; more

Corresponding email(s):   zhaoxin@mail.neu.edu.cn

Key Words:  River pollution, Microbial community diversity, Denaturing gradient gel electrophoresis (DGGE), Heavy metal, Zinc (Zn), Arsenic (As)


Share this article to: More <<< Previous Article|

Jun Zhao, Xin Zhao, Lei Chao, Wei Zhang, Tao You, Jie Zhang. Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China[J]. Journal of Zhejiang University Science B, 2014, 15(7): 670-680.

@article{title="Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China",
author="Jun Zhao, Xin Zhao, Lei Chao, Wei Zhang, Tao You, Jie Zhang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="7",
pages="670-680",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400003"
}

%0 Journal Article
%T Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China
%A Jun Zhao
%A Xin Zhao
%A Lei Chao
%A Wei Zhang
%A Tao You
%A Jie Zhang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 7
%P 670-680
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400003

TY - JOUR
T1 - Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China
A1 - Jun Zhao
A1 - Xin Zhao
A1 - Lei Chao
A1 - Wei Zhang
A1 - Tao You
A1 - Jie Zhang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 7
SP - 670
EP - 680
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400003


Abstract: 
Pollution discharge disturbs the natural functions of water systems. The environmental microbial community composition and diversity are sensitive key indicators to the impact of water pollutant on the microbial ecology system over time. It is meaningful to develop a way to identify the microbial diversity related to heavy metal effects in evaluating river pollution. Water and sediment samples were collected from eight sections along the Tiaozi River where wastewater and sewage were discharged from Siping City in northeastern China. The main pollutants contents and microbial communities were analyzed. As the primary metal pollutants, zinc (Zn) and arsenic (As) were recorded at the maximum concentrations of 420 and 5.72 μg/L in the water, and 1704 and 1.92 mg/kg in the sediment, respectively. These pollutants posed a threat to the microbial community diversity as only a few species of bacteria and eukaryotes with strong resistance were detected through denaturing gradient gel electrophoresis (DGGE). Acinetobacter johnsonii, Clostridium cellulovorans, and Trichococcus pasteurii were the dominant bacteria in the severely polluted areas. The massive reproduction of Limnodrilus hoffmeisteri almost depleted the dissolved oxygen (DO) and resulted in the decline of the aerobic bacteria. It was noted that the pollution reduced the microbial diversity but the L. hoffmeisteri mass increased as the dominant community, which led to the overconsuming of DO and anaerobic stinking water bodies. Water quality, concentrations of heavy metals, and the spatial distribution of microbial populations have obvious consistencies, which mean that the heavy metals in the river pose a serious stress on the microorganisms.

中国东北条子河中微生物群落变化与锌砷污染的关系研究

研究目的: 通过研究河流微生物与污染物的互作关系,为河流污染治理等相关研究提供新途径。
创新要点:研究选择的目标河流是报道较少的辽河二级支流,该研究对于了解支流污染特别是东北地区河流污染有重要的意义。将分子生态学技术应用于分析不同污染程度的河流底泥微生物变化,建立微生物种群变化和污染物的互作关系。
研究方法:选取沿条子河的8个代表性区段,分析河水和底泥中重金属和污染物的变化情况。通过变性梯度凝胶电泳(DGGE)技术分析不同河流区段内真核和原核微生物种群变化,解析河流中污染物对底泥微生物的影响,建立微生物种群变化和重金属污染的互作关系。
重要结论:重金属污染物的存在能抑制底泥中微生物生长,仅少量具有较强抗性的微生物存活(见图4);有机污染物的增加使对重金属有较强抗性的Limnodrilus hoffmeisteri大量繁殖(见图2~4),从而大量消耗溶解氧,导致好氧微生物死亡和河水自净能力退化,最终引起水质恶化。由此可见,微生物对环境污染物的变化有很敏感的响应,通过对环境中微生物的监测有助于进一步分析环境污染的变化。

关键词:河流污染;微生物群落结构;变性梯度凝胶电泳(DGGE);重金属;锌;砷

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater, Washington DC, USA :

[2] Bassam, B.J., Caetano-Anolls, G., Gresshoff, P.M., 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 196(1):80-83. 


[3] Brandt, K.K., Frandsen, R.J.N., Holm, P.E., 2010. Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol Biochem, 42(5):748-757. 


[4] Brinkhurst, R.O., Kennedy, C.R., 1965. Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream. J Anim Ecol, 34(2):429-443. 


[5] Chao, L., Chen, S., Dai, X., 2010. Assessment on water environment status of surface water in typical country river–Tiaozi River. Heilongjiang Agric Sci, (in Chinese),2010(11):53-56. 

[6] Chen, B., 2009. Discussion on harm of polluted Tiaozi River and Zhaosutai River to drinking water for people and livestocks in Changtu County. Environ Protection Sci, (in Chinese),35(1):45-47. 

[7] Cooke, J.A., Andrew, S.M., Johnson, M.S., 1990. Lead, zinc, cadmium and fluoride in small mammals from contaminated grass-land established on fluorspar tailings. Water Air Soil Pollut, 51(1-2):43-54. 


[8] Deniseger, J., Erickson, J., Austin, A., 1990. The effects of decreasing heavy metal concentrations on the biota of Buttle Lake, Vancouver Island, British Colimbia. Water Res, 24(4):403-416. 


[9] Gao, C.F., Zhao, J., Lang, X.M., 2010. Applied research on artificial strengthen ecological filter bed technology for the improvement of the water in Tiaozihe River project. J Anhui Agric Sci, (in Chinese),38(30):17006-17008. 

[10] Garcia-Armisen, T., Vercammen, K., Passerat, J., 2011. Antimicrobial resistance of heterotrophic bacteria in sewage-contaminated rivers. Water Res, 45(2):788-796. 


[11] Gaur, V.K., Gupta, S.K., Pandey, S.D., 2005. Distribution of heavy metals in sediment and water of River Gomti. Environ Monit Assess, 102(1-3):419-433. 


[12] GB3838-2002, .  Environmental Quality Standard for Surface Water. State Standards of Peoples Republic of China,Beijing, China :

[13] Ghosh, A.K., Bhattacharyya, P., Pal, R., 2004. Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environ Int, 30(4):491-499. 


[14] Goberna, M., Insam, H., Klammer, S., 2005. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb Ecol, 50(3):315-326. 


[15] Green, J.L., Bohannan, B.J.M., Whitaker, R.J., 2008. Microbial biogeography: from Taxonomy to traits. Science, 320(5879):1039-1043. 


[16] Han, J., Liu, Y., Liu, X., 2013. The effect of continuous Zn(II) exposure on the organic degradation capability and soluble microbial products (SMP) of activated sludge. J Hazard Mater, 244-245:489-494. 


[17] Jiang, H., Zou, L., Li, X., 2002. Circumstance assessment of eco-geological environment in Siping district. J Jilin Univ, (in Chinese),32(1):87-91. 

[18] Kennedy, C.R., 1966. The life history of Limnodrilus hoffmeisteri CLAP (Oligochaeta, 551 Tubificidae) and its adaptive significance. Oikos, 17(2):158-168. 


[19] Lorenz, N., Hintemann, T., Kramarewa, T., 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem, 38(6):1430-1437. 


[20] Maier, R.M., Pepper, I.L., Gerba, C.P., 2009.  Environmental Microbiology. Elsevier Inc., Academic Press,USA :

[21] Malik, A., Sakamoto, M., Ono, T., 2003. Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. J Biosci Bioeng, 96(1):10-15. 


[22] Marabottini, R., Stazi, S.R., Papp, R., 2013. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol Environ Saf, 96:147-153. 


[23] May, L.A., Smiley, B., Schmidt, M.G., 2001. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol, 47(9):829-841. 


[24] Ministry of Environmental Protection of the Peoples Republic of China (MEP), 2013. 2012 China Environment Bulletin. , Available from http://jcs.mep.gov.cn/hjzl/zkgb/2012zkgb/,:

[25] Proia, L., Lupini, G., Osorio, V., 2013. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere, 92(9):1126-1135. 


[26] Ren, N., Xing, D., Rittmann, B.E., 2007. Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ Microbiol, 9(5):1112-1125. 


[27] Sin, S.N., Chua, H., Lo, W., 2001. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int, 26(5):297-301. 


[28] Sun, M.Y., Dafforn, K.A., Brown, M.V., 2012. Bacterial communities are sensitive indicators of contaminant stress. Mar Pollut Bull, 64(5):1029-1038. 


[29] Tian, Y., Liu, H., Zheng, T., 2008. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull, 57(6):707-715. 


[30] Virsek, M.K., Hubad, B., Lapanje, A., 2013. Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat Toxicol, 144-145:208-217. 


[31] Xie, S., Liu, J., Qiao, C., 2009. Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci, 21(1):76-82. 


[32] Yan, D., Deng, W., Wang, J., 2000. A study on content of heavy metal in sediment of Tiaozi River. Bull Soil Water Conserv, (in Chinese),20:29-31. 

[33] Yang, X., Chen, S., Chao, L., 2012. Pollution characteristics and assessment of heavy metals in Tiaozi River sediments. J Anhui Agric Sci, (in Chinese),40(4):2147-2150. 

[34] Yuan, X., Qian, X., Zhang, R., 2012. Performance and microbial community analysis of a novel bio-cord carrier during treatment of a polluted river. Bioresour Technol, 117:33-39. 


[35] Zhang, X., Tian, Y., Wang, Q., 2012. Heavy metal distribution and speciation during sludge reduction using aquatic worms. Bioresour Technol, 126:41-47. 


[36] Zhao, X., Xing, D., Zhang, L., 2010. Characterization and over expression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinenseInt J Hydrogen Energy, 35(18):9598-9602. 


[37] Zhao, X., Xing, D., Liu, B., 2012. The effects of metal ions and l-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. Int J Hydrogen Energy, 37(18):13711-13717. 


[38] Zhou, Y., Yao, J., Choi, M.M.F., 2009. A combination method to study microbial communities and activities in zinc contaminated soil. J Hazard Mater, 169(1):875-881. 


[39] Zhu, J., Zhang, J., Li, Q., 2013. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar Pollut Bull, 70(1):134-139. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE