References
[1] Altschul, S.F., Gish, W., Miller, W., 1990. Basic local alignment search tool.
J Mol Biol, 215(3):403-410.
[2] Arnedo-Andrs, M., Gil-Ortega, R., Luis-Arteaga, M., 2002. Development of RAPD and SCAR markers linked to the
Pvr4 locus for resistance to PVY in pepper (
Capsicum annuum L.).
Theor Appl Genet, 105(6-7):1067-1074.
[3] Atkins, S.D., Clark, I.M., Sosnowska, D., 2003. Detection and quantification of
Plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting.
Appl Environ Microbiol, 69(8):4788-4793.
[4] Bae, Y.S., Knudsen, G.R., 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of
Trichoderma harzianum
.
Phytopathology, 91(3):301-306.
[5] Bae, Y.S., Knudsen, G.R., 2005. Soil microbial biomass influence on growth and biocontrol efficacy of
Trichoderma harzianum
.
Biol Control, 32(2):236-242.
[6] Bautista, R., Crespillo, R., Cnovas, F., 2003. Identification of olive-tree cultivars with SCAR markers.
Euphytica, 129(1):33-41.
[7] Bentez, T., Rincn, A.M., Limn, M.C., 2004. Biocontrol mechanisms of
Trichoderma strains.
Int Microbiol, 7:249-260.
[8] Benson, D.A., Cavanaugh, M., Clark, K., 2013. GenBank.
Nucl Acids Res, 41(D1):D36-D42.
[9] Black, J.A., Foarde, K.K., 2007. Comparison of four different methods for extraction of
Stachybotrys chartarum spore DNA and verification by real-time PCR.
J Microbiol Meth, 70(1):75-81.
[10] Castillo, P., 2009. Isolation and identification of strains of
Trichoderma sp. natives of Chile. Evaluation of antagonism against sp. Biologist Thesis. Catholic University of Valparaso,Chile :
[11] Cordier, C., Edel-Hermann, V., Martin-Laurent, F., 2007. SCAR-based real time PCR to identify a biocontrol strain (T1) of
Trichoderma atroviride and study its population dynamics in soils.
J Microbiol Meth, 68(1):60-68.
[12] del Mar Jimnez-Gasc, M., Jimnez-Diaz, R.M., 2003. Development of a specific PCR-based assay for the identification of
Fusarium oxysporum f. sp.
ciceris and its pathogenic races 0, 1A, 5, and 6.
Phytopathology, 93(2):200-209.
[13] Druzhinina, I.S., Kubicek, C.P., 2005. Species concepts and biodiversity in
Trichoderma and
Hypocrea: from aggregate species to species clusters?.
J Zhejiang Univ-Sci B, 6(2):100-112.
[14] Druzhinina, I.S., Kopchinskiy, A.G., Komn, M., 2005. An oligonucleotide barcode for species identification in
Trichoderma and
Hypocrea
.
Fung Genet Biol, 42(10):813-828.
[15] Druzhinina, I.S., Seild-Seiboth, V., Herrera-Estrella, A., 2011.
Trichoderma: the genomics of opportunistic success.
Nat Rev Microbiol, 9(10):749-759.
[16] Feng, X.M., Holmberg, A.I.J., Sundh, I., 2011. Specific SCAR markers and multiplex real-time PCR for quantification of two
Trichoderma biocontrol strains in environmental samples.
Biocontrol, 56(6):903-913.
[17] Gams, W., Bissett, J., 1998. Morphology and identification of
Trichoderma
.
and . Vol. 1. Basic Biology, Taxonomy and Genetics. Taylor & Francis,UK :3-34.
[18] Green, H., Jensen, D.F., 1995. A tool for monitoring
Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere.
Phytopathology, 85(11):1436-1440.
[19] Grondona, I., Hermosa, R., Tejada, M., 1997. Physiological and biochemical characterization of
Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.
Appl Environ Microbiol, 63(8):3189-3198.
[20] Hagn, A., Wallisch, S., Radl, V., 2007. A new cultivation independent approach to detect and monitor common
Trichoderma species in soils.
J Microbiol Meth, 69(1):86-92.
[21] Harman, G.E., 2006. Overview of mechanisms and uses of
Trichoderma spp.
Phytopathology, 96(2):190-194.
[22] Harman, G.E., Howell, C.R., Viterbo, A., 2004.
Trichoderma species—opportunistic, avirulent plant symbionts.
Nat Rev Microbiol, 2(1):43-56.
[23] Hermosa, M.R., Grondona, I., Iturriaga, E.A., 2000. Molecular characterization and identification of biocontrol isolates of
Trichoderma spp.
Appl Environ Microbiol, 66(5):1890-1898.
[24] Hoitink, H.A.J., Boehm, M.J., 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon.
Annu Rev Phytopathol, 37(1):427-446.
[25] Jessup, C.M., Forde, S.E., Bohannan, B.J.M., 2005. Microbial experimental systems in ecology.
Advances in Ecological Research, Elsevier,37:273-307.
[26] Knudsen, I.M., Jensen, B., Jensen, D.F., 1996. Occurrence of
Gliocladium roseum on barley roots in sand and field soil. Monitoring Antagonistic Fungi Deliberately Released into the Environment. Springer,the Netherlands :33-37.
[27] Komon-Zelazowska, M., Bissett, J., Zafari, D., 2007. Genetically closely related but phenotypically divergent
Trichoderma species cause green mold disease in oyster mushroom farms worldwide.
Appl Environ Microbiol, 73(22):7415-7426.
[28] Koveza, O.V., Kokaeva, Z.G., Gostimsky, S.A., 2001. Creation of a SCAR marker in Pea (
Pisum sativum L.) using RAPD analysis.
Russ J Genet, 37(4):464-466.
[29] Kredics, L., Hatvani, L., Naeimi, S., 2014. Biodiversity of the genus
Hypocrea/Trichoderma in different habitats.
Biotechnology and Biology of
, Elsevier,:3-24.
[30] Kubicek, C.P., Komon-Zelazowska, M., Druzhinina, I.S., 2008. Fungal genus
Hypocrea/
Trichoderma: from barcodes to biodiversity.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 9(10):753-763.
[31] Lehmann, P.F., Lin, D., Lasker, B.A., 1992. Genotypic identification and characterization of species and strains within the genus
Candida by using random amplified polymorphic DNA.
J Clin Microbiol, 30(12):3249-3254.
[32] Lievens, B., Rep, M., Thomma, B.P.H.J., 2008. Recent developments in the molecular discrimination of formae speciales of
Fusarium oxysporum
.
Pest Manag Sci, 64(8):781-788.
[33] Martin-Laurent, F., Philippot, L., Hallet, S., 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods.
Appl Environ Microbiol, 67(5):2354-2359.
[34] Massart, S., de Clercq, D., Salmon, M., 2005. Development of real-time PCR using Minor Groove Binding probe to monitor the biological control agent
Candida oleophila (strain O).
J Microbiol Meth, 60(1):73-82.
[35] Moore, J.C., Ruiter, P.C., Hunt, H.W., 1996. Microcosms and soil ecology: critical linkages between fields studies and modelling food webs.
Ecology, 77(3):694-705.
[36] Naeimi, S., Kocsub, S., Antal, Z., 2011. Strain-specific SCAR markers for the detection of
Trichoderma harzianum AS12-2, a biological control agent against
Rhizoctonia solani, the causal agent of rice sheath blight.
Acta Biol Hung, 62(1):73-84.
[37] Paavanen-Huhtala, S., Avikainen, H., Yli-Mattila, T., 2000. Development of strain-specific primers for a strain of
Gliocladium catenulatum used in biological control.
Eur J Plant Pathol, 106(2):187-198.
[38] Parasnis, A.S., Gupta, V.S., Tamhankar, S.A., 2000. A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings.
Mol Breed, 6(3):337-344.
[39] Pasquali, M., Piatti, P., Gullino, M.L., 2006. Development of a real-time polymerase chain reaction for the detection of
Fusarium oxysporum f. sp
basilici from basil seed and roots.
J Phytopathol, 154(10):632-636.
[40] Pujol, M., Badosa, E., Cabrefiga, J., 2005. Development of a strain-specific quantitative method for monitoring
Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight.
FEMS Microbiol Lett, 249(2):343-352.
[41] Rozen, S., Skaletsky, H., 1999. Primer3 on the WWW for general users and for biologist programmers.
Bioinformatics Methods and Protocols, Springer,:365-386.
[42] Rubio, M.B., Hermosa, M.R., Keck, E., 2005. Specific PCR assays for the detection and quantification of DNA from the biocontrol strain
Trichoderma harzianum 2413 in soil.
Microb Ecol, 49(1):25-33.
[43] Savazzini, F., Longa, C.M.O., Pertot, I., 2008. Real-time PCR for detection and quantification of the biocontrol agent
Trichoderma atroviride strain SC1 in soil.
J Microbiol Meth, 73(2):185-194.
[44] Savazzini, F., Oliveira Longa, C.M., Pertot, I., 2009. Impact of the biocontrol agent
Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy.
Soil Biol Biochem, 41(7):1457-1465.
[45] Schena, L., Finetti-Sialer, M.M., Gallitelli, D., 2002. Molecular detection of strain L47 of
Aureobasidium pullulans, a biocontrol agent of postharvest disease.
Plant Dis, 86(1):54-60.
[46] Schuster, A., Schmoll, M., 2010. Biology and biotechnology of
Trichoderma
.
Appl Microbiol Biotechnol, 87(3):787-799.
[47] van der Putten, W.H., Klironomos, J.N., Wardle, D.A., 2007. Microbial ecology of biological invasions.
ISME J, 1(1):28-37.
[48] Vargas-Gil, S., Pastor, S., March, G.J., 2009. Quantitative isolation of biocontrol agents
Trichoderma spp.,
Gliocladium spp. and actinomycetes from soil with culture media.
Microbiol Res, 164(2):196-205.
[49] Viterbo, A., Haran, S., Friesem, D., 2001. Antifungal activity of a novel endochitinase gene (
chit36) from
Trichoderma harzianum Rifai TM.
FEMS Microbiol Lett, 200(2):169-174.
[50] White, T.J., Bruns, T., Lee, S.J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications. Academic Press,USA :315-322.
[51] Williams, J., Clarkson, J.M., Mills, P.R., 2003. A selective medium for quantitative reisolation of
Trichoderma harzianum from
Agaricus bisporus compost.
Appl Environ Microbiol, 69(7):4190-4191.
[52] Zhang, F., Zhu, Z., Yang, X., 2013.
Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere.
Appl Soil Ecol, 72:41-48.
Open peer comments: Debate/Discuss/Question/Opinion
<1>