CLC number: S823
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-09
Cited: 0
Clicked: 4311
Chun-lei Yang, Le-luo Guan, Jian-xin Liu, Jia-kun Wang. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product[J]. Journal of Zhejiang University Science B, 2015, 16(8): 709-719.
@article{title="Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product",
author="Chun-lei Yang, Le-luo Guan, Jian-xin Liu, Jia-kun Wang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="8",
pages="709-719",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500013"
}
%0 Journal Article
%T Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product
%A Chun-lei Yang
%A Le-luo Guan
%A Jian-xin Liu
%A Jia-kun Wang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 8
%P 709-719
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500013
TY - JOUR
T1 - Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product
A1 - Chun-lei Yang
A1 - Le-luo Guan
A1 - Jian-xin Liu
A1 - Jia-kun Wang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 8
SP - 709
EP - 719
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500013
Abstract: The presence of yeast cells could stimulate hydrogen utilization of acetogens and enhance acetogenesis. To understand the roles of acetogens in rumen fermentation, an in vitro rumen fermentation experiment was conducted with addition of acetogen strain (TWA4) and/or Saccharomyces cerevisiae fermentation product (XP). A 2×2 factorial design with two levels of TWA4 (0 or 2×107 cells/ml) and XP (0 or 2 g/L) was performed. Volatile fatty acids (VFAs) were increased (P<0.05) in XP and TWA4XP, while methane was increased only in TWA4XP (P<0.05). The increase rate of microorganisms with formyltetrahydrofolate synthetase, especially acetogens, was higher than that of methanogens under all treatments. Lachnospiraceae was predominant in all acetogen communities, but without close acetyl-CoA synthase (ACS) amino acid sequences from cultured isolates. Low-Acetitomaculum ruminis-like ACS was predominant in all acetogen communities, while four unique phylotypes in XP treatment were all amino acid identified low-Eubacterium limosum-like acetogens. It differs to XP treatment that more low-A. ruminis-like and less low-E. limosum-like sequences were identified in TWA4 and TWA4XP treatments. Enhancing acetogenesis by supplementation with an acetogen strain and/or yeast cells may be an approach to mitigate methane, by targeting proper acetogens such as uncultured low-E. limosum-like acetogens.
[1]Asanuma, N., Hino, T., 2000. Activity and properties of fumarate reductase in ruminal bacteria. J. Gen. Appl. Microbiol., 46(3):119-125.
[2]Breznak, J.A., 1994. Acetogenesis from carbon dioxide in termite guts. In: Drake, H.L. (Ed.), Acetogenesis. Chapman and Hall, New York, p.303-330.
[3]Chaucheyras-Durand, F., Fonty, G., 2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev., 41(1):57-70.
[4]Chaucheyras-Durand, F., Fonty, G., Bertin, G., et al., 1995a. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Curr. Microbiol., 31(4):201-205.
[5]Chaucheyras-Durand, F., Fonty, G., Bertin, G., et al., 1995b. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol., 61:3466-3467.
[6]Denman, S.E., McSweeney, C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial population within the rumen. FEMS Microbiol. Ecol., 58(3):572-582.
[7]Denman, S.E., Tomkins, N.W., McSweeney, C.S., 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol., 62(3):313-322.
[8]Drake, H.L., Küsel, K., Matthies, C., 2006. Acetogenic prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., et al. (Eds.), The Prokaryotes. Springer, US, Vol. 2, p.354-420.
[9]Felsenstein, J., 1993. Phylip (Phylogeny Inference Package) Version 3.57c. Department of Genetics, University of Washington, Seattle. Available from http://evolution.genetics.washington.edu/phylip.html [Accessed on Jan. 1, 2015].
[10]Fonty, G., Joblin, K., Chavarot, M., et al., 2007. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl. Environ. Microbiol., 73(20):6391-6403.
[11]Gagen, E.J., Denman, S.E., Padmanabha, J., et al., 2010. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl. Environ. Microbiol., 76(23):7785-7795.
[12]Gagen, E.J., Wang, J.K., Padmanabha, J., et al., 2014. Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach. BMC Microbiol., 14(1):314.
[13]Gish, W., States, D.J., 1993. Identification of protein coding regions by database similarity search. Nat. Genet., 3(3):266-272.
[14]Goering, H.K., van Soest, P.J., 1970. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agriculture Handbook No. 379, Agriculture Research Service, USDA, p.387-598.
[15]Greening, R.C., Leedle, J.A.Z., 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol., 151(5):399-406.
[16]Henderson, G., Naylor, G.E., Leahy, S.C., et al., 2010. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl. Environ. Microbiol., 76(7):2058-2066.
[17]Hu, W.L., Liu, J.X., Ye, J.A., et al., 2005. Effect of tea saponins on rumen fermentation in vitro. Anim. Feed Sci. Technol., 120(3-4):333-339.
[18]Joblin, K., 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Crop Pasture Sci., 50(8):1307-1314.
[19]Johnson, K.A., Johnson, D.E., 1995. Methane emissions from cattle. J. Anim. Sci., 73:2483-2492.
[20]Kamra, D., Pawar, M., Singh, B., 2012. Effect of plant secondary metabolites on rumen methanogens and methane emissions by ruminants. In: Patra, A.K. (Ed.), Dietary Phytochemicals and Microbes. Springer Netherlands, p.351-370.
[21]Kobayashi, Y., 2010. Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Aust. J. Anim. Sci., 23(3):410-416.
[22]Lascano, G.J., Heinrichs, A.J., 2009. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livest. Sci., 124(1-3):48-57.
[23]le Van, T.D., Robinson, J.A., Ralph, J., et al., 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl. Environ. Microbiol., 64(9):3429-3436.
[24]Lopez, S., McIntosh, F., Wallace, R., et al., 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim. Feed. Sci. Technol., 78(1-2):1-9.
[25]Mathrani, I.M., Boone, D.R., 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol., 50:140-143.
[26]Mauricio, R.M., Mould, F.L., Dhanoa, M.S., et al., 1999. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol., 79(4):321-330.
[27]Mitsumori, M., Sun, W., 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim. Sci., 21(1):144-154.
[28]Morvan, B., Bonnemoy, F., Fonty, G., et al., 1996. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol., 32(3):129-133.
[29]Nollet, L., Velde, I.V., Verstraete, W., 1997a. Effect of the addition of Peptostreptococcus productus ATCC35244 on the gastro-intestinal microbiota and its activity, as simulated in an in vitro simulator of the human gastro-intestinal tract. Appl. Microbiol. Biot., 48(1):99-104.
[30]Nollet, L., Demeyer, D., Verstraete, W., 1997b. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol., 63(1):194-200.
[31]Nollet, L., Mbanzamihigo, L., Demeyer, D., et al., 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Anim. Feed Sci. Technol., 71(1-2):49-66.
[32]Ouwerkerk, D., Maguire, A., McMillen, L., et al., 2009. Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) kangaroos. Anim. Prod. Sci., 49(11):1043-1051.
[33]Pacaud, S., Loubiere, P., Goma, G., 1985. Methanol metabolism by Eubacterium limosum B2: effects of pH and carbon dioxide on growth and organic acid production. Curr. Microbiol., 12(5):245-250.
[34]Patra, A.K., 2012. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ. Monit. Assess., 184(4):1929-1952.
[35]Robinson, P.H., Wiseman, J., Udén, P., et al., 2006. Some experimental design and statistical criteria for analysis of studies in manuscripts submitted for consideration for publication. Anim. Feed Sci. Technol., 129(1-2):1-11.
[36]Sahakian, A.B., Jee, S.R., Pimentel, M., 2010. Methane and the gastrointestinal tract. Digest. Dis. Sci., 55(8):2135-2143.
[37]Sakthivel, P.C., Kamra, D.N., Agarwal, N., et al., 2012. Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Aust. J. Anim. Sci., 25(6):812-817.
[38]Schloss, P.D., Westcott, S.L., Ryabin, T., et al., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75(23):7537-7541.
[39]Sharak Genthner, B.R., Davis, C., Bryant, M.P., 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol., 42(1):12-19.
[40]Strober, W., 2001. Monitoring cell growth. In: Coligan, J.E., Bierer, B.E., Margulies, D.H., et al. (Eds.), Current Protocols in Immunology. John Wiley & Sons, USA.
[41]Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12):2725-2729.
[42]van Nevel, C., Demeyer, D.I., 1995. Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials. J. Dairy Sci., 78(12):2797-2806.
[43]Wolin, M., Miller, T., Stewart, C., 1997. Microbe-microbe interactions. In: Hobson, P.N., Stewart, C.S. (Eds.), The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, an imprint of Chapman & Hall, p.467-491.
[44]Xu, K., Liu, H., Du, G., et al., 2009. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe, 15(5):204-213.
Open peer comments: Debate/Discuss/Question/Opinion
<1>