CLC number: R392.12
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-22
Cited: 0
Clicked: 5215
Yan-long Zhao, Pu-xun Tian, Feng Han, Jin Zheng, Xin-xin Xia, Wu-jun Xue, Xiao-ming Ding, Chen-guang Ding. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1055-1063.
@article{title="Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow",
author="Yan-long Zhao, Pu-xun Tian, Feng Han, Jin Zheng, Xin-xin Xia, Wu-jun Xue, Xiao-ming Ding, Chen-guang Ding",
journal="Journal of Zhejiang University Science B",
volume="18",
number="12",
pages="1055-1063",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700003"
}
%0 Journal Article
%T Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow
%A Yan-long Zhao
%A Pu-xun Tian
%A Feng Han
%A Jin Zheng
%A Xin-xin Xia
%A Wu-jun Xue
%A Xiao-ming Ding
%A Chen-guang Ding
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1055-1063
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700003
TY - JOUR
T1 - Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow
A1 - Yan-long Zhao
A1 - Pu-xun Tian
A1 - Feng Han
A1 - Jin Zheng
A1 - Xin-xin Xia
A1 - Wu-jun Xue
A1 - Xiao-ming Ding
A1 - Chen-guang Ding
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1055
EP - 1063
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700003
Abstract: macrophages have a diverse set of functions based upon their activation states. The activation states, including resting (M0) and polarizing (M1 and M2) states, of macrophages derived from the mouse bone marrow, spleen, and peritoneal cavity (BMs, SPMs, and PCMs, respectively) were compared. We evaluated the macrophage yield per mouse and compared the surface markers major histocompatibility complex (MHC) II and CD86 by flow cytometry. The relative mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, mannose receptor (MR), and Ym1 in the M0, M1, and M2 states were also compared using real-time polymerase chain reaction (PCR) analysis. Bone marrow yielded the most macrophages with the best homogeneity, but they were polarized toward the M2 phenotype. All three types of macrophages had the capacity to polarize into the M1 and M2 states, but SPMs had a stronger capacity to polarize into M1. The three types of macrophages showed no differences in their capacity to polarize into the M2 state. Therefore, the three types of macrophages have distinct characteristics regardless of their resting or polarizing states. Although bone marrow can get large amounts of homogeneous macrophages, the macrophages cannot replace tissue-derived macrophages.
[1]Alagesan, S., Griffin, M.D., 2014. Alternatively activated macrophages as therapeutic agents for kidney disease: in vivo stability is a key factor. Kidney Int., 85(4):730-733.
[2]Biswas, S.K., Mantovani, A., 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 11(10):889-896.
[3]Cao, H., Wolff, R.G., Meltzer, M.S., et al., 1989. Differential regulation of class II MHC determinants on macrophages by IFN-γ and IL-4. J. Immunol., 143(11):3524-3531.
[4]Cao, Q., Wang, Y., Zheng, D., et al., 2014. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int., 85(4):794-806.
[5]Chung, S., Ranjan, R., Lee, Y.G., et al., 2015. Distinct role of foxo1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. J. Leukoc. Biol., 97(2):327-339.
[6]Das, A., Sinha, M., Datta, S., et al., 2015. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol., 185(10):2596-2606.
[7]Davies, L.C., Taylor, P.R., 2015. Tissue-resident macrophages: then and now. Immunology, 144(4):541-548.
[8]Duffield, J.S., 2010. Macrophages and immunologic inflammation of the kidney. Semin. Nephrol., 30(3):234-254.
[9]Feng, Y.H., Mao, H., 2012. Expression and preliminary functional analysis of Siglec-F on mouse macrophages. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(5):386-394.
[10]Gerrard, T.L., Dyer, D.R., Mostowski, H.S., 1990. IL-4 and granulocyte-macrophage colony-stimulating factor selectively increase HLA-DR and HLA-DP antigens but not HLA-DQ antigens on human monocytes. J. Immunol., 144(12):4670-4674.
[11]Gordon, S., Taylor, P.R., 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 5(12):953-964.
[12]Gordon, S., Martinez, F.O., 2010. Alternative activation of macrophages: mechanism and functions. Immunity, 32(5):593-604.
[13]Gordon, S., Pluddemann, A., Martinez Estrada, F., 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev., 262(1):36-55.
[14]Hoover, D.L., Nacy, C.A., 1984. Macrophage activation to kill leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J. Immunol., 132(3):1487-1493.
[15]Jiang, X., 2015. Macrophage-produced IL-10 limits the chemotherapy efficacy in breast cancer. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):44-45.
[16]Komohara, Y., Jinushi, M., Takeya, M., 2014. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci., 105(1):1-8.
[17]Lameijer, M.A., Tang, J., Nahrendorf, M., et al., 2013. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev. Mol. Diagn., 13(6):567-580.
[18]Lavin, Y., Mortha, A., Rahman, A., et al., 2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol., 15(12):731-744.
[19]Lawrence, T., Natoli, G., 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol., 11(11):750-761.
[20]Lee, S., Huen, S., Nishio, H., et al., 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol., 22(2):317-326.
[21]Lu, J., Cao, Q., Zheng, D., et al., 2013. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int., 84(4):745-755.
[22]Mantovani, A., Sica, A., Sozzani, S., et al., 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 25(12):677-686.
[23]Parsa, R., Andresen, P., Gillett, A., et al., 2012. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in nod mice. Diabetes, 61(11):2881-2892.
[24]Raes, G., de Baetselier, P., Noel, W., et al., 2002. Differential expression of FIZZ1 and YM1 in alternatively versus classically activated macrophages. J. Leukoc. Biol., 71(4):597-602.
[25]Ray, A., Dittel, B.N., 2010. Isolation of mouse peritoneal cavity cells. J. Vis. Exp., 35:e1488.
[26]Sica, A., Erreni, M., Allavena, P., et al., 2015. Macrophage polarization in pathology. Cell Mol. Life Sci., 72(21):4111-4126.
[27]Thornley, T.B., Fang, Z., Balasubramanian, S., et al., 2014. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J. Clin. Invest., 124(8):3443-3454.
[28]Weischenfeldt, J., Porse, B., 2008. Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc., 2008:5080.
[29]Wilson, H.M., Walbaum, D., Rees, A.J., 2004. Macrophages and the kidney. Curr. Opin. Nephrol. Hypertens., 13(3):285-290.
[30]Zhang, X., Goncalves, R., Mosser, D.M., 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol., 14:11.
Open peer comments: Debate/Discuss/Question/Opinion
<1>