CLC number: N8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-06-06
Cited: 0
Clicked: 5907
Min Jiang, Heng Li, Jin-Song Shi, Zheng-Hong Xu. Depolymerized konjac glucomannan: preparation and application in health care[J]. Journal of Zhejiang University Science B, 2018, 19(7): 505-514.
@article{title="Depolymerized konjac glucomannan: preparation and application in health care",
author="Min Jiang, Heng Li, Jin-Song Shi, Zheng-Hong Xu",
journal="Journal of Zhejiang University Science B",
volume="19",
number="7",
pages="505-514",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700310"
}
%0 Journal Article
%T Depolymerized konjac glucomannan: preparation and application in health care
%A Min Jiang
%A Heng Li
%A Jin-Song Shi
%A Zheng-Hong Xu
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 7
%P 505-514
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700310
TY - JOUR
T1 - Depolymerized konjac glucomannan: preparation and application in health care
A1 - Min Jiang
A1 - Heng Li
A1 - Jin-Song Shi
A1 - Zheng-Hong Xu
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 7
SP - 505
EP - 514
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700310
Abstract: konjac glucomannan (KGM) is a water-soluble polysaccharide obtained from the roots and tubers of konjac plants. Recently, a degraded product of KGM, depolymerized KGM (DKGM), has attracted attention because of its low viscosity, improved hydrophily, and favorable physiological functions. In this review, we describe the preparation of DKGM and its prebiotic effects. Other health benefits of DKGM, covering antioxidant and immune activity, are also discussed, as well as its safety. DKGM could be a candidate for use as a tool for the treatment of various diseases, including intestinal flora imbalance, and oxidative- and immune-related disorders.
[1]Albrecht S, van Muiswinkel GC, Schols HA, et al., 2009. Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem, 57(9):3867-3876.
[2]Al-Ghazzewi FH, Tester RF, 2010. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro. Int J Cosmet Sci, 32(2):139-142.
[3]Al-Ghazzewi FH, Tester RF, 2012. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric, 92(11):2394-2396.
[4]Al-Ghazzewi FH, Khanna S, Tester RF, et al., 2007. The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric, 87(9):1758-1766.
[5]Al-Ghazzewi FH, Tester RF, Alvani K, 2012. The synbiotic effects of konjac glucomannan hydrolysates (GMH) and lactobacilli on the growth of Staphylococcus aureus and Salmonella typhimurium. Nutr Food Sci, 42(2):97-101.
[6]Bateni E, Tester R, Al-Ghazzewi F, et al., 2013. The use of konjac glucomannan hydrolysates (GMH) to improve the health of the skin and reduce acne vulgaris. Am J Dermatol Venereol, 2(2):10-14.
[7]Behera SS, Ray RC, 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol, 92:942-956.
[8]Bhotmange DU, Wallenius JH, Singhal RS, et al., 2017. Enzymatic extraction and characterization of polysaccharide from tuber aestivum. Bioact Carbohydr Diet Fibre, 10:1-9.
[9]Cescutti P, Campa C, Delben F, et al., 2002. Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res, 337(24):2505-2511.
[10]Chen CY, Huang YC, Yang TY, et al., 2016. Degradation of konjac glucomannan by Thermobifida fusca thermostable β-mannanase from yeast transformant. Int J Biol Macromol, 82:1-6.
[11]Chen F, Qian H, 2008. Optimization of ultrasonic degradation of konjac glucomannan by response surface analysis. Sci Technol Food Ind, 29(1):146-152 (in Chinese).
[12]https://doi.org/10.13386/j.issn1002-0306.2008.01.062
[13]Chen HL, Fan YH, Chen ME, et al., 2005. Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition, 21(10):1059-1064.
[14]Chen J, Liu D, Shi B, et al., 2013. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology. Carbohydr Polym, 93(1):81-88.
[15]Cheng LF, Feng XY, Duan SW, et al., 2016. Optimization of the process conditions on preparation of glucomanno-oligosaccharides using a novel β-mannanase. Food Sci, 37(6):34-38 (in Chinese).
[16]Connolly ML, Lovegrove JA, Tuohy KM, 2010. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods, 2(3):219-224.
[17]Dang Y, Liu SY, Zhang ZJ, et al., 2015. Research of preparation and production optimization of mannoligosaccharides. Sci Technol Food Ind, 36(8):250-256 (in Chinese).
[18]https://doi.org/10.13386/j.issn1002-0306.2015.08.044
[19]Deng LL, Zhong G, Liu BY, et al., 2013. Properties of konjac oligosaccharides prepared by semi-dry enzymatic hydrolysis. Food Sci, 34(15):115-119 (in Chinese).
[20]Dhawan S, Kaur J, 2007. Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol, 27(4):197-216.
[21]Elamir AA, Tester RF, Al-Ghazzewi FH, et al., 2008. Effects of konjac glucomannan hydrolysates on the gut microflora of mice. Nutr Food Sci, 38(5):422-429.
[22]Feng L, An XJ, Qi Y, et al., 2015. Protective effect of konjac oligo-glucomannan on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. Sci Technol Food Ind, 36(1):349-352 (in Chinese).
[23]https://doi.org/10.13386/j.issn1002-0306.2015.01.065
[24]Guo Y, Wang HS, Zhou K, 2017. Effect of konjacmannan oligosaccharides on the co-culture of Lactobacillus plantarum and Enterococcus faecalis. Chin Wild Plant Resour, 36(2):13-16 (in Chinese).
[25]He D, Guo X, Yang SL, et al., 2013. Preparation of konjac mannose-oligosaccharides by β-mannanase and composition analysis. China Brew, 32(2):85-88 (in Chinese).
[26]Huang YC, Xie QR, Ma YF, et al., 2006. Study on the degradation of konjac glucomannan with ultrasonic. Food Sci Technol, (9):103-105 (in Chinese).
[27]https://doi.org/10.13684/j.cnki.spkj.2006.09.040
[28]Jian W, Sun Y, Huang H, et al., 2013. Study on preparation and separation of Konjac oligosaccharides. Carbohydr Polym, 92(2):1218-1224.
[29]Jian W, Tu L, Wu L, et al., 2017. Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by γ-irradiation. Food Chem, 231:42-50.
[30]Jiang M, Li H, Wang M, et al., 2016. Subchronic toxicity and genotoxicity assessment of low molecular mass konjac mannan oligosaccharide in vitro and in vivo. Prog Biochem Biophys, 43(3):271-280 (in Chinese).
[31]Jiao F, Wang X, Song X, et al., 2017. Processing optimization and anti-oxidative activity of enzymatic extractable polysaccharides from Pleurotus djamor. Int J Biol Macromol, 98:469-478.
[32]Jin W, Xu W, Li Z, et al., 2014a. Degraded konjac glucomannan by γ-ray irradiation assisted with ethanol: preparation and characterization. Food Hydrocoll, 36:85-92.
[33]Jin W, Mei T, Wang Y, et al., 2014b. Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohydr Polym, 99:270-277.
[34]Kang LX, Zhou YL, Ma LX, 2012. Enzymatic preparation of mannose-oligosacchades. Food Sci Technol, 37(7):237-239 (in Chinese).
[35]https://doi.org/10.13684/j.cnki.spkj.2012.07.024
[36]Li J, Li B, Geng P, et al., 2017. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll, 70:14-19.
[37]Li JF, Wu MC, Cheng K, et al., 2007. Study on the preparation of oligo-glucomannan using konjak gum by β-mannanase. Food Ferment Ind, 33(1):21-24 (in Chinese).
[38]https://doi.org/10.13995/j.cnki.11-1802/ts.2007.01.004
[39]Li MY, Feng GP, Xu ZL, et al., 2018. Effect of γ irradiation on the prebiotic functions of konjac glucomannan. Food Sci, 39(11):83-88.
[40]Liu HX, Gong JS, Li H, et al., 2015. Biochemical characterization and cloning of an endo-1,4-β-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile. Process Biochem, 50(5):712-721.
[41]Liu J, Xu Q, Zhang J, et al., 2015. Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydr Polym, 130:398-404.
[42]Liu R, Li Y, Zhang B, 2016. The effects of konjac oligosaccharide on TNBS-induced colitis in rats. Int Immunopharmacol, 40:385-391.
[43]Liu RX, Li YC, Zhang B, 2017. Effect of konja coligosaccharide on gut microbiota in rats with ulcerative colitis. J Chin Instit Food Sci Technol, 17(6):53-59 (in Chinese).
[44]https://doi.org/10.16429/j.1009-7848.2017.06.007
[45]Mikkelson A, Maaheimo H, Hakala TK, 2013. Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr Res, 372:60-68.
[46]Pan T, Peng S, Xu Z, et al., 2013. Synergetic degradation of konjac glucomannan by γ-ray irradiation and hydrogen peroxide. Carbohydr Polym, 93(2):761-767.
[47]Primec M, Mičetić-Turk D, Langerholc T, 2017. Analysis of short-chain fatty acids in human feces: a scoping review. Anal Biochem, 526:9-21.
[48]Qin QJ, Zhang Y, Liu BY, et al., 2013. Optimization of the preparation of konjac oligo-glucomannan in semi-drying enzymatic hydrolysis method and its antioxidant capacity. Sci Tech Food Ind, 34(23):186-191 (in Chinese).
[49]https://doi.org/10.13386/j.issn1002-0306.2013.23.004
[50]Qin QJ, Xu XQ, Zhang Y, et al., 2014. Toxicological and prebiotic evaluation of konjac oligosaccharides. Food Sci, 35(21):244-248 (in Chinese).
[51]Sivaprakasam S, Prasad PD, Singh N, 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther, 164:144-151.
[52]Suwannaporn P, Thepwong K, Tester R, et al., 2013. Tolerance and nutritional therapy of dietary fibre from konjac glucomannan hydrolysates for patients with inflammatory bowel disease (IBD). Bioact Carbohydr Diet Fibre, 2(2):93-98.
[53]Suzuki H, Oomizu S, Yanase Y, et al., 2010. Hydrolyzed konjac glucomannan suppresses IgE production in mice B cells. Int Arch Allergy Immumol, 152(2):122-130.
[54]Tao JH, Duan JA, Jiang S, et al., 2016. Simultaneous determination of six short-chain fatty acids in colonic contents of colitis mice after oral administration of polysaccharides from Chrysanthemum morifolium Ramat by gas chromatography with flame ionization detector. J Chromatogr B Analyt Technol Biomed Life Sci, 1029-1030:88-94.
[55]Tester R, Al-Ghazzewi F, 2017. Glucomannans and nutrition. Food Hydrocoll, 68:246-254.
[56]Tester R, Al-Ghazzewi F, Shen N, 2012. The use of konjac glucomannan hydrolysates to recover healthy microbiota in infected vaginas treated with an antifungal agent. Benef Microbes, 3(1):61-66.
[57]Unger MM, Spiegel J, Dillmann KU, et al., 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord, 32:66-72.
[58]van Zyl WH, Rose SH, Trollope K, et al., 2010. Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem, 45(8):1203-1213.
[59]Wan JJ, Jiang M, Li H, et al., 2015. Effects of low polymerization degree konjacmannan-oligosaccharide on intestinal and microflora of normal mice. Food Ferment Ind, 41(9):13-18 (in Chinese).
[60]https://doi.org/10.13995/j.cnki.11-1802/ts.201519003
[61]Wang CH, Lai P, Chen ME, et al., 2008. Antioxidative capacity produced by Bifidobacterium- and Lactobacillus acidophilus-mediated fermentations of konjac glucomannan and glucomannan oligosaccharides. J Sci Food Agric, 88(7):1294-1300.
[62]Wang L, Tan SS, Song R, et al., 2015. Synergistic effect of konjac oligosaccharides/isomalto-oligosaccharide complex on the growth of Lactobacillus acidophilus. Mod Food Sci Technol, 31(10):151-155 (in Chinese).
[63]https://doi.org/10.13982/j.mfst.1673-9078.2015.10.026
[64]Wang M, Shuai TG, Qin QJ, et al., 2016a. Effect of konjac oligosaccharides on rat intestinal environment. Food Sci, 37(7):197-203 (in Chinese).
[65]Wang M, Jiang M, Li H, et al., 2016b. Investigation on the regular patterns of mannan oligosaccharides degradation and utilization by lactic acid bacteria. Food Ferment Ind, 42(11):20-24 (in Chinese).
[66]Wu CF, Dong YY, Li JJ, et al., 2010. Study on the preparation of konjac oligo-glucomannan by β-mannanase. Biotechnol Bull, (1):118-122 (in Chinese).
[67]https://doi.org/10.13560/j.cnki.biotech.bull.1985.2010.01.016
[68]Xu CM, Wu MC, Li JF, et al., 2008. Study on hydrolytic conditions of konjak glucomannan by β-mannanase. J Food Sci Biotechnol, 27(3):120-124 (in Chinese).
[69]Xu LP, Wu ZY, Ren FX, et al., 2011. Study on the optimization of the enzymatic hydrolysis conditions of konjac gum. J Anhui Agric Sci, 39(21):13058-13059 (in Chinese).
[70]Xu MD, Ke L, Zeng Q, et al., 2005. Investigated production of mannan-oligosaccharides using konjac power by β-mannan mannohydrolase from Aspergillus niger. Acta Agric Boreali-Occidentalis Sin, 14(6):115-118 (in Chinese).
[71]Xu SC, Li YL, Liu Y, et al., 2011. Study on the preparation of feeding oligo-glucomannan by enzymatic method. Feed Ind, 32(2):47-49 (in Chinese).
[72]Xu ZL, Sun YM, Yang YH, et al., 2007. Effect of γ-irradiation on some physiochemical properties of konjac glucomannan. Carbohydr Polym, 70(4):444-450.
[73]Yang J, Vittori N, Wang W, et al., 2017. Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates. Carbohydr Polym, 159:58-65.
[74]Yao X, Luo XG, Han BC, 2011. Study on the enzyme-catalyzed degradation of konjac glucomannan and the preparation conditions on the degradation product of various molecular weights. Sci Tech Food Ind, 32(9):97-101 (in Chinese).
[75]https://doi.org/10.13386/j.issn1002-0306.2011.09.047
[76]Zhang YQ, Gan X, Xie BJ, 2003. Preparation of konjac oligo-glucomannan by cellulase. J Jinshou Univ (Nat Sci Ed), 3:42-44 (in Chinese).
[77]Zhang ZS, Wang XM, Liu CB, et al., 2016. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr Polym, 150:227-231.
[78]Zheng Q, Wu Y, Xu H, et al., 2015. The effects of dietary oxidized konjac glucomannan and its acidolysis products on the immune response, expression of immune related genes and disease resistance of Schizothorax prenanti. Fish Shellfish Immunol, 45(2):551-559.
[79]Zheng Q, Wu Y, Xu H, et al., 2016. Immune responses to Aeromonas hydrophila infection in Schizothorax prenanti fed with oxidized konjac glucomannan and its acidolysis product. Fish Shellfish Immunol, 49:260-267.
Open peer comments: Debate/Discuss/Question/Opinion
<1>