CLC number: S432.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-12-05
Cited: 0
Clicked: 3903
Mi Ni, Qiong Wu, Hong-li Wang, Wei-cheng Liu, Bin Hu, Dian-peng Zhang, Juan Zhao, De-wen Liu, Cai-ge Lu. Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola[J]. Journal of Zhejiang University Science B, 2019, 20(1): 84-94.
@article{title="Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola",
author="Mi Ni, Qiong Wu, Hong-li Wang, Wei-cheng Liu, Bin Hu, Dian-peng Zhang, Juan Zhao, De-wen Liu, Cai-ge Lu",
journal="Journal of Zhejiang University Science B",
volume="20",
number="1",
pages="84-94",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700609"
}
%0 Journal Article
%T Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola
%A Mi Ni
%A Qiong Wu
%A Hong-li Wang
%A Wei-cheng Liu
%A Bin Hu
%A Dian-peng Zhang
%A Juan Zhao
%A De-wen Liu
%A Cai-ge Lu
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 1
%P 84-94
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700609
TY - JOUR
T1 - Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola
A1 - Mi Ni
A1 - Qiong Wu
A1 - Hong-li Wang
A1 - Wei-cheng Liu
A1 - Bin Hu
A1 - Dian-peng Zhang
A1 - Juan Zhao
A1 - De-wen Liu
A1 - Cai-ge Lu
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 1
SP - 84
EP - 94
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700609
Abstract: peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 µg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.
[1]Bérdy J, 2005. Bioactive microbial metabolites. J Antibiot, 58(1):1-26.
[2]Castro JF, Razmilic V, Gomez-Escribano JP, et al., 2015. Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii. Appl Environ Microbiol, 81(17):5820-5831.
[3]Chen LL, Liu LJ, Shi M, et al., 2009. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett, 299(2):135-142.
[4]Cho JY, Williams PG, Kwon HC, et al., 2007. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod, 70(8):1321-1328.
[5]Foulston LC, Bibb MJ, 2010. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA, 107(30):13461-13466.
[6]Gao C, Zhang AL, Chen KQ, et al., 2015. Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochem Eng J, 97:59-64.
[7]Guo YP, Huang Y, 2007. Design and validation of primers for housekeeping genes of streptomycetes. Acta Microbiol Sinica, 47(6):1080-1083 (in Chinese).
[8]Hankin L, Anagnostakis SL, 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. J Gen Microbiol, 98(1):109-115.
[9]Hu MJ, Cox KD, Schnabel G, et al., 2011. Monilinia species causing brown rot of peach in China. PLoS ONE, 6(9):e24990.
[10]Ikeno S, Aoki D, Sato K, et al., 2002. KasT gene of Streptomyces kasugaensis M338-M1 encodes a DNA-binding protein which binds to intergenic region of kasU-kasJ in the kasugamycin biosynthesis gene cluster. J Antibiot, 55(12):1053-1062.
[11]Jung H, Kim C, Kim K, et al., 2003. Color characteristics of monascus pigments derived by fermentation with various amino acids. J Agric Food Chem, 51(5):1302-1306.
[12]Kubicek CP, Starr TL, Glass NL, 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol, 52:427-451.
[13]Liu G, Chater KF, Chandra G, et al., 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev, 77(1):112-143.
[14]Lu CG, Liu WC, Qiu JY, et al., 2008. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01. Braz J Microbiol, 39(4):701-707.
[15]Miyamoto KT, Komatsu M, Ikeda H, 2014. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl Environ Microbiol, 80(16):5028-5036.
[16]Oldenburg KR, Vo KT, Ruhland B, et al., 1996. A dual culture assay for detection of antimicrobial activity. J Biomol Screen, 1(3):123-130.
[17]Pei QH, Li Y, Ge XZ, et al., 2019. Multipath effects of berberine on peach brown rot fungus Monilinia fructicola. Crop Protect, 116:92-100.
[18]Poniatowska A, Michalecka M, Bielenin A, 2013. Characteristic of Monilinia spp. fungi causing brown rot of pome and stone fruits in Poland. Eur J Plant Pathol, 135(4):855-865.
[19]Prapagdee B, Kuekulvong C, Mongkolsuk S, 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci, 4(5):330-337.
[20]Schwyn B, Neilands JB, 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem, 160(1):47-56.
[21]Sharma M, Dangi P, Choudhary M, 2014. Actinomycetes: source, identification, and their applications. Int J Curr Microbiol App Sci, 3(2):801-832.
[22]Thanapipatsiri A, Claesen J, Gomez-Escribano JP, et al., 2015. A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes. Microb Cell Fact, 14:145.
[23]Turumtay H, 2015. Cell wall engineering by heterologous expression of cell wall-degrading enzymes for better conversion of lignocellulosic biomass into biofuels. Bioenergy Res, 8(4):1574-1588.
[24]Vaidya G, Lohman DJ, Meier R, 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2):171-180.
[25]Wang TY, Wang L, Zhang JH, et al., 2011. A simplified universal genomic DNA extraction protocol suitable for PCR. Genet Mol Res, 10(1):519-525.
[26]Wang XX, Huang LL, Kang ZS, et al., 2010. Optimization of the fermentation process of Actinomycete strain hhs.015T. J Biomed Biotechnol, 2010:141876.
[27]Weisburg WG, Barns SM, Pelletier DA, et al., 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173(2):697-703.
[28]Wilgenbusch JC, Swofford D, 2003. Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics, 00(1):6.4.1-6.4.28.
[29]Wu H, Qu S, Lu CY, et al., 2012. Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics, 13:337.
[30]Wu HM, Tao XL, Lao XF, et al., 1994. The structure of Qingjingmycin A novel peptide-type metabolite of a hybrid strain FM3-32 derived from Streptomyces qingfengmyceticus and S. hydroscopicus var. jinggangensis. Nat Prod Lett, 5(2):89-93.
[31]Wu Q, Bai LQ, Liu WC, et al., 2013a. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. J Microbiol, 51(2):166-173.
[32]Wu Q, Li YQ, Li YY, et al., 2013b. Identification of a novel fungus, Leptosphaerulina chartarum SJTU59 and characterization of its xylanolytic enzymes. PLoS ONE, 8(9):e73729.
[33]Wu SC, Halley JE, Luttig C, et al., 2006. Identification of an endo-β-1,4-
[34]Yu XM, Yu T, Yin GH, et al., 2015. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res, 14(4):14717-14730.
[35]Yu Y, Bai LQ, Minagawa K, et al., 2005. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol, 71(9):5066-5076.
[36]Yuan WM, Crawford DL, 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol, 61(8):3119-3128.
[37]List of electronic supplementary materials
[38]Table S1 Primers used in this study
[39]Table S2 Solubility determination of active substances
Open peer comments: Debate/Discuss/Question/Opinion
<1>