CLC number: Q93
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-05-07
Cited: 0
Clicked: 2876
Hai-Hong Li, Yang-Tao Wang, Yang Wang, Hai-Xia Wang, Kai-Kai Sun, Zhen-Mei Lu. Bacterial degradation of anthraquinone dyes[J]. Journal of Zhejiang University Science B, 2019, 20(6): 528-540.
@article{title="Bacterial degradation of anthraquinone dyes",
author="Hai-Hong Li, Yang-Tao Wang, Yang Wang, Hai-Xia Wang, Kai-Kai Sun, Zhen-Mei Lu",
journal="Journal of Zhejiang University Science B",
volume="20",
number="6",
pages="528-540",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900165"
}
%0 Journal Article
%T Bacterial degradation of anthraquinone dyes
%A Hai-Hong Li
%A Yang-Tao Wang
%A Yang Wang
%A Hai-Xia Wang
%A Kai-Kai Sun
%A Zhen-Mei Lu
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 6
%P 528-540
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900165
TY - JOUR
T1 - Bacterial degradation of anthraquinone dyes
A1 - Hai-Hong Li
A1 - Yang-Tao Wang
A1 - Yang Wang
A1 - Hai-Xia Wang
A1 - Kai-Kai Sun
A1 - Zhen-Mei Lu
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 6
SP - 528
EP - 540
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900165
Abstract: anthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing. This paper reviews the classification and structures of anthraquinone dyes, summarizes the types of degradative bacteria, and explores the possible mechanisms and influencing factors of bacterial anthraquinone dye degradation. Present research progress and existing problems are further discussed. Finally, future research directions and key points are presented.
[1]Ali H, 2010. Biodegradation of synthetic dyes—a review. Water Air Soil Pollut, 213(1-4):251-273.
[2]Andleeb S, Atiq N, Robson GD, et al., 2012. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res, 19(5):1728-1737.
[3]Balapure KH, Jain K, Chattaraj S, et al., 2014. Co-metabolic degradation of diazo dye—reactive blue 160 by enriched mixed cultures BDN. J Hazard Mater, 279:85-95.
[4]Banat IM, Nigam P, Singh D, et al., 1996. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol, 58(3):217-227.
[5]Cai JL, Huang Y, Li X, 2008. Cytological mechanisms of pollutants adsorption by biosorbent. Chin J Ecol, 27(6):1005-1011 (in Chinese).
[6]Cerboneschi M, Corsi M, Bianchini R, et al., 2015. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Appl Microbiol Biotechnol, 99(19):8235-8245.
[7]Chaudhari AU, Paul D, Dhotre D, et al., 2017. Effective biotransformation and detoxification of anthraquinone dye Reactive Blue 4 by using aerobic bacterial granules. Water Res, 122:603-613.
[8]Chen CC, Liao HJ, Cheng CY, et al., 2007. Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett, 29(3):391-396.
[9]Crini G, 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 97(9):1061-1085.
[10]Cui DZ, Zhang H, He RB, et al., 2016. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by anaerobic sludge. Int J Environ Res Public Health, 13(11):1053.
[11]Cui MH, Cui D, Gao L, et al., 2016. Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Res, 105:520-526.
[12]Das A, Mishra S, 2017. Removal of textile dye Reactive Green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng, 5(1):612-627.
[13]Deng DY, Guo J, Zeng GQ, et al., 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad, 62(3):263-269.
[14]Du LN, Wang B, Li G, et al., 2012. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater, 205-206:47-54.
[15]Duval J, Pecher V, Poujol M, et al., 2016. Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crop Prod, 94:812-833.
[16]Fan L, Zhu SN, Liu DQ, et al., 2008. Decolorization mechanism of 1-amino-4-bromoanthraquinone-2-sulfonic acid using Sphingomonas herbicidovorans FL. Dyes Pigments, 78(1):34-38.
[17]Forss J, Lindh MV, Pinhassi J, et al., 2017. Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved. PLoS ONE, 12(1):e0170562.
[18]He JX, 2009. Dye Chemistry. China Textile & Apparel Press, Beijing, China (in Chinese).
[19]Hitz HR, Huber W, Reed RH, 1978. The absorption of dyes on activated sludge. J Soc Dyers Colour, 94(2):71-76.
[20]Holkar CR, Pandit AB, Pinjari DV, 2014. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresour Technol, 173:342-351.
[21]Itoh K, Yatome C, Ogawa T, 1993. Biodegradation of anthraquinone dyes by Bacillus subtilis. Bull Environ Contam Toxicol, 50(4):522-527.
[22]Jadhav SU, Kalme SD, Govindwar SP, 2008. Biodegradation of Methyl Red by Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad, 62(2):135-142.
[23]Khataee A, Gholami P, Vahid B, et al., 2016. Heterogeneous sono-fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye. Ultrason Sonochem, 32:357-370.
[24]Kobayashi T, Taya H, Wilaipun P, et al., 2017. Malachite-green-removing properties of a bacterial strain isolated from fish ponds in Thailand. Fish Sci, 83(5):827-835.
[25]Kodam KM, Soojhawon I, Lokhande PD, et al., 2005. Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol, 21(3):367-370.
[26]Krishnan J, Kishore AA, Suresh A, et al., 2017. Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int Biodeterior Biodegrad, 119:16-27.
[27]Kurade MB, Waghmode TR, Khandare RV, et al., 2016. Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng, 121(4):442-449.
[28]Lee YH, Matthews RD, Pavlostathis SG, 2006. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ Res, 78(2):156-169.
[29]Linde D, Coscolín C, Liers C, et al., 2014. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr Purif, 103:28-37.
[30]Liu N, Xie XH, Yang B, et al., 2017. Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages. Environ Sci Pollut Res, 24(1):252-263.
[31]Lovato ME, Fiasconaro ML, Martin CA, 2017. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies. Water Sci Technol, 75(4):813-822.
[32]Lu H, Guan XF, Wang J, et al., 2015. Enhanced bio-decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment. J Environ Sci, 27:124-130.
[33]Mishra S, Maiti A, 2018. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res, 25(9):8286-8314.
[34]Novotný Č, Dias N, Kapanen A, et al., 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9):1436-1442.
[35]Ogola HJO, Kamiike T, Hashimoto N, et al., 2009. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. Strain PCC 7120. Appl Environ Microbiol, 75(23):7509-7518.
[36]Ogugbue CJ, Sawidis T, Oranusi NA, 2012. Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol, 62(3):1141-1153.
[37]Olaganathan R, Patterson J, 2009. Decolorization of anthraquinone Vat Blue 4 by the free cells of an autochthonous bacterium, Bacillus subtilis. Water Sci Technol, 60(12):3225-3232.
[38]Otto B, Schlosser D, 2014. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta, 240(6):1225-1236.
[39]Park H, Mameda N, Choo KH, 2018. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes. Chem Eng J, 345:233-241.
[40]Parmar ND, Shukla SR, 2018. Biodegradation of anthraquinone based dye using an isolated strain Staphylococcus hominis subsp. hominis DSM 20328. Environ Prog Sustain Energy, 37(1):203-214.
[41]Pearce CI, Lloyd JR, Guthrie JT, 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments, 58(3):179-196.
[42]Ren SZ, Guo J, Zeng GQ, et al., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol, 72(6):1316-1321.
[43]Roberts JN, Singh R, Grigg JC, et al., 2011. Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23):5108-5119.
[44]Rybczyńska-Tkaczyk K, Święciło A, Szychowski KA, et al., 2018. Comparative study of eco- and cytotoxicity during biotransformation of anthraquinone dye Alizarin Blue Black B in optimized cultures of microscopic fungi. Ecotoxicol Environ Safe, 147:776-787.
[45]Sadykov MR, Thomas VC, Marshall DD, et al., 2013. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol, 195(13):3035-3044.
[46]Samanta M, Mukherjee M, Ghorai UK, et al., 2018. Ultrasound assisted catalytic degradation of textile dye under the presence of reduced graphene oxide enveloped copper phthalocyanine nanotube. Appl Surf Sci, 449:113-121.
[47]Šlosarčíková P, Novotný Č, Malachová K, et al., 2017. Effect of yeasts on biodegradation potential of immobilized cultures of white rot fungi. Sci Total Environ, 589:146-152.
[48]Solís M, Solís A, Inés Pérez H, et al., 2012. Microbial decolouration of azo dyes: a review. Process Biochem, 47(12):1723-1748.
[49]Tian JH, Pourcher AM, Peu P, 2016. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol, 63(1):30-37.
[50]Uchida T, Sasaki M, Tanaka Y, et al., 2015. A dye-decolorizing peroxidase from Vibrio cholerae. Biochemistry, 54(43):6610-6621.
[51]Velayutham K, Madhava AK, Pushparaj M, et al., 2018. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ Technol, 39(22):2900-2907.
[52]Walker GM, Weatherley LR, 2000. Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut, 108(2):219-223.
[53]Wang H, Su JQ, Zheng XW, et al., 2009. Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad, 63(4):395-399.
[54]Wang J, Zhou Y, Li PL, et al., 2015. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Appl Biochem Biotechnol, 175(6):3162-3172.
[55]Wang YP, Zhu K, Zheng YM, et al., 2011. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes. Molecules, 16(12):9838-9849.
[56]Wang YZ, Pan Y, Zhu T, et al., 2018. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci Total Environ, 634:616-627.
[57]Xie XH, Liu N, Yang B, et al., 2016. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. Int Biodeterior Biodegrad, 111:14-21.
[58]Xu MY, Guo J, Zeng GQ, et al., 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Appl Microbiol Biotechnol, 71(2):246-251.
[59]Yagub MT, Sen TK, Afroze S, et al., 2014. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci, 209:172-184.
[60]Yang F, Xie XH, Liu N, et al., 2017. On the effects and biotoxicity variations as a result of dye biodegradation by bacterial consortium FF. J Safet Environ, 17(2):654-659 (in Chinese).
[61]Yu J, Wang XW, Yue PL, 2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res, 35(15):3579-3586.
[62]Zhang H, Zhang S, He F, et al., 2016. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J Hazard Mater, 320:265-277.
[63]Zhang SC, Lu XJ, 2018. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere, 206:777-783.
Open peer comments: Debate/Discuss/Question/Opinion
<1>