Full Text:   <719>

Summary:  <34>

CLC number: 

On-line Access: 2025-04-23

Received: 2023-09-19

Revision Accepted: 2024-04-23

Crosschecked: 2025-04-24

Cited: 0

Clicked: 1089

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.4 P.353-370

http://doi.org/10.1631/jzus.B2300678


Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification


Author(s):  Tiantian GE, Yao CHEN, Lantian PANG, Junwei SHAO, Zhi CHEN

Affiliation(s):  State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; more

Corresponding email(s):   zjuchenzhi@zju.edu.cn, sjw507@163.com

Key Words:  Acute liver failure, PANoptosis, Gene Expression Omnibus (GEO), Biomarker, Therapeutic target


Tiantian GE, Yao CHEN, Lantian PANG, Junwei SHAO, Zhi CHEN. Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification[J]. Journal of Zhejiang University Science B, 2025, 26(4): 353-370.

@article{title="Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification",
author="Tiantian GE, Yao CHEN, Lantian PANG, Junwei SHAO, Zhi CHEN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="4",
pages="353-370",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300678"
}

%0 Journal Article
%T Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification
%A Tiantian GE
%A Yao CHEN
%A Lantian PANG
%A Junwei SHAO
%A Zhi CHEN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 4
%P 353-370
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300678

TY - JOUR
T1 - Roles of PANoptosis and related genes in acute liver failure: neoteric insight from bioinformatics analysis and animal experiment verification
A1 - Tiantian GE
A1 - Yao CHEN
A1 - Lantian PANG
A1 - Junwei SHAO
A1 - Zhi CHEN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 4
SP - 353
EP - 370
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300678


Abstract: 
BackgroundPANoptosis has the features of pyroptosis, apoptosis, and necroptosis. Numerous studies have confirmed the diverse roles of various types of cell death in acute liver failure (ALF), but limited attention has been given to the crosstalk among them. In this study, we aimed to explore the role of PANoptosis in ALF and uncover new targets for its prevention or treatment.
MethodsThree ALF-related datasets (GSE14668, GSE62029, and GSE74000) were downloaded from the gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Hub genes were identified through intersecting DEGs, genes obtained from weighted gene co-expression network analysis (WGCNA), and genes related to PANoptosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein‍‒‍protein interaction (PPI) analyses and gene set enrichment analysis (GSEA) were performed to determine functional roles. Verification was performed using an ALF mouse model.
ResultsOur results showed that expression of seven hub genes (B-cell lymphoma-2-modifying factor (BMF), B-cell lymphoma-2-interacting protein 3-like (BNIP3L), Caspase-1 (CASP1), receptor-interacting protein kinase 3 (RIPK3), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA), uncoordinated-5 homolog B receptor (UNC5B), and Z-DNA-binding protein 1 (ZBP1)) was up-regulated in liver samples of patients. However, in the ALF mouse model, the expression of BNIP3L, RIPK3, phosphorylated RIPK3 (P-RIPK3), UACA, and cleaved caspase-1 was up-regulated, while the expression of CASP1 and UNC5B was down-regulated. The expression of ZBP1 and BMF increased only during the development of ALF, and there was no significant change in the end stage. Immunofluorescence of mouse liver tissue showed that macrophages expressed all seven markers. Western blot results showed that pyroptosis, apoptosis, and necroptosis were always involved in lipopolysaccharide (LPS)/d-galactosamine (d-gal)‍-induced ALF mice. The ALF cell model showed that bone marrow-derived macrophages (BMDMs) form PANoptosomes after LPS stimulation.
ConclusionsOur results suggest that PANoptosis of macrophages promotes the development of ALF. The seven new ALF biomarkers identified and validated in this study may contribute to further investigation of diagnostic markers or novel therapeutic targets of ALF.

泛凋亡(PANoptosis)及其相关基因在急性肝衰竭中的作用:通过生物信息学分析和动物实验验证所获得的新见解

葛田田1,陈瑶1,庞澜天2,邵骏威3,陈智1
1浙江大学医学院附属第一医院传染病诊治国家重点实验室, 国家感染性疾病临床医学研究中心, 国家传染病医学中心, 感染性疾病诊治协同创新中心, 中国杭州市, 310003
2浙江大学医学院附属第二医院感染科, 中国杭州市, 310009
3浙江大学医学院附属第二医院肝胆胰外科, 中国杭州市, 310009
摘要:泛凋亡具有焦亡、凋亡和坏死性凋亡的特征。尽管大量研究已证实各类型细胞的死亡在急性肝衰竭(ALF)中发挥着不同作用,但对它们间的互作关注较少。本研究旨在探讨泛凋亡在ALF中的作用,并挖掘可作为预防或治疗ALF的新靶点。本研究首先从基因表达综合数据库(GEO)中下载三个与ALF相关的数据集(GSE14668、GSE62029和GSE74000),从中筛选差异表达基因(DEGs),并通过加权基因共表达网络分析(WGCNA)对上述基因和泛凋亡相关基因集取交集得到枢纽基因;通过基因本体论(GO)、京都基因与基因组百科全书(KEGG)、蛋白质-蛋白质互作(PPI)和基因集富集分析(GSEA)确定枢纽基因功能;最后利用ALF小鼠和细胞模型进行验证。结果表明,在ALF患者肝脏样本中,7个枢纽基因(BMFBNIP3LCASP1RIPK3UACAUNC5BZBP1)表达水平均上调;在ALF小鼠模型中,BNIP3L、RIPK3、P-RIPK3、UACA和cleaved caspase-1表达上调,而CASP1和UNC5B的表达下调;ZBP-1和BMF的表达仅在造模过程中升高,终末期则无明显变化。小鼠肝组织免疫荧光显示,这7个枢纽基因在巨噬细胞中均有表达;western blot结果表明,在脂多糖(LPS)/d-氨基半乳糖(d-gal)引起的ALF小鼠模型中,焦亡、凋亡和坏死性凋亡均有发生;ALF细胞模型实验显示,骨髓源巨噬细胞在LPS刺激后形成泛凋亡小体。综上,巨噬细胞的泛凋亡有可能加速ALF的进展,此外本研究鉴定并验证的7个ALF枢纽基因将有希望作为未来深入研究ALF的诊断标志物或新的治疗靶点。

关键词:急性肝衰竭;泛凋亡;基因表达综合数据库;生物标志物;治疗靶点

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BernalW, WendonJ, 2013. Acute liver failure. N Engl J Med, 369(26):2525-2534.

[2]ChenYJ, JiaoDY, LiuY, et al., 2023. FBXL4 mutations cause excessive mitophagy via BNIP3/BNIP3L accumulation leading to mitochondrial DNA depletion syndrome. Cell Death Differ, 30(10):2351-2363.

[3]ChoiSW, OhH, ParkSY, et al., 2022. Netrin-1 attenuates hepatic steatosis via UNC5b/PPARγ‍-‍mediated suppression of inflammation and ER stress. Life Sci, 311:121149.

[4]ChristgenS, ZhengM, KesavardhanaS, et al., 2020. Identification of the panoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (panoptosis). Front Cell Infect Microbiol, 10:237.

[5]DuanYW, ChenSX, LiQY, et al., 2022. Neuroimmune mechanisms underlying neuropathic pain: the potential role of TNF-α-necroptosis pathway. Int J Mol Sci, 23(13):7191.

[6]FangYX, MaKY, HuangYM, et al., 2023. Fibronectin leucine-rich transmembrane protein 2 drives monocyte differentiation into macrophages via the UNC5B-Akt/mTOR axis. Front Immunol, 14:1162004.

[7]GalluzziL, KeppO, KrautwaldS, et al., 2014. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol, 35:24-32.

[8]GalluzziL, Bravo-San PedroJM, VitaleI, et al., 2015. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 22(1):58-73.

[9]GreenDR, KroemerG, 2005. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest, 115(10):2610-2617.

[10]GuillotA, TackeF, 2023. Spatial dimension of macrophage heterogeneity in liver diseases. eGastroenterology, 1(1):e000003.

[11]HaoY, YangB, YangJK, et al., 2022. ZBP1: a powerful innate immune sensor and double-edged sword in host immunity. Int J Mol Sci, 23(18):10224.

[12]HuangL, AnXZ, ZhuY, et al., 2022. Netrin-1 induces the anti-apoptotic and pro-survival effects of B-ALL cells through the Unc5b-MAPK axis. Cell Commun Signal, 20:122.

[13]HuoCY, TangYL, LiXS, et al., 2023. Melatonin alleviates lung injury in H1N1-infected mice by mast cell inactivation and cytokine storm suppression. PLoS Pathog, 19(5):e1011406.

[14]JiangWK, SunSK, WangDY, et al., 2022. MicroRNA-22 suppresses NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokine production by targeting the HIF-1α and NLRP3 in human dental pulp fibroblasts. Int Endod J, 55(11):1225-1240.

[15]KarkiR, SundaramB, SharmaBR, et al., 2021a. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep, 37(3):109858.

[16]KarkiR, SharmaBR, TuladharS, et al., 2021b. Synergism of TNF‍-‍α and IFN-‍γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1):149-168.e17.

[17]KhanSA, ShahN, WilliamsR, et al., 2006. Acute liver failure: a review. Clin Liver Dis, 10(2):239-258.

[18]KochAW, MathivetT, LarrivéeB, et al., 2011. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell, 20(1):33-46.

[19]KuriakoseT, ManSM, Subbarao MalireddiRK, et al., 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol, 1(2):aag2045.

[20]LeekJT, JohnsonWE, ParkerHS, et al., 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28(6):882-883.

[21]LiAC, YangQ, LouGH, et al., 2021. 5-‍((7-Chloro-6-fluoro-1h-indol-3-yl) methyl)‍-3-methylimidazolidine-2,‍4-dione as a RIP1 inhibitor protects LPS/d-galactosamine-induced liver failure. Life Sci, 273:119304.

[22]LiXX, LiXC, YangJL, et al., 2023. In situ sustained macrophage-targeted nanomicelle-hydrogel microspheres for inhibiting osteoarthritis. Research (Wash D C), 6:0131.

[23]LinJF, HuPS, WangYY, et al., 2022. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing panoptosis. Signal Transduct Target Ther, 7:54.

[24]LiuL, SakaiT, TranNH, et al., 2009. Nucling interacts with nuclear factor-‍κB, regulating its cellular distribution. FEBS J, 276(5):1459-1470.

[25]LongJS, RyanKM, 2012. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene, 31(49):5045-5060.

[26]MalireddiRKS, GurungP, MavuluriJ, et al., 2018. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med, 215(4):‍1023-1034.

[27]MalireddiRKS, KesavardhanaS, KannegantiTD, 2019. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol, 9:406.

[28]NewtonK, 2015. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol, 25(6):347-353.

[29]NguyenLN, KannegantiTD, 2022. PANoptosis in viral infection: the missing puzzle piece in the cell death field. J Mol Biol, 434(4):167249.

[30]OhkuraT, TaniguchiSI, YamadaK, et al., 2004. Detection of the novel autoantibody (anti-UACA antibody) in patients with Graves’ disease. Biochem Biophys Res Commun, 321(2):432-440.

[31]PanHD, PanJX, LiP, et al., 2022. Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol, 238:109019.

[32]PetrikJ, 2006. Diagnostic applications of microarrays. Transfus Med, 16(4):233-247.

[33]PuthalakathH, StrasserA, 2002. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ, 9(5):505-512.

[34]PuthalakathH, VillungerA, O'ReillyLA, et al., 2001. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science, 293(5536):1829-1832.

[35]RamjaunAR, TomlinsonS, EddaoudiA, et al., 2007. Upregulation of two BH3-only proteins, Bmf and Bim, during TGFβ-induced apoptosis. Oncogene, 26(7):970-981.

[36]RebsamenM, HeinzLX, MeylanE, et al., 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep, 10(8):916-922.

[37]SakaiT, LiuL, ShishidoY, et al., 2003. Identification of a novel, embryonal carcinoma cell-associated molecule, nucling, that is up-regulated during cardiac muscle differentiation. J Biochem, 133(4):429-436.

[38]SchwabeRF, LueddeT, 2018. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol, 15(12):738-752.

[39]SlowikA, LammerdingL, ZendedelA, et al., 2018. Impact of steroid hormones E2 and P on the NLRP3/ASC/Casp1 axis in primary mouse astroglia and BV-2 cells after in vitro hypoxia. J Steroid Biochem Mol Biol, 183:18-26.

[40]SowterHM, RatcliffePJ, WatsonP, et al., 2001. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 61(18):6669-6673.

[41]SpeirM, LawlorKE, 2021. RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol, 109:114-124.

[42]StravitzRT, LeeWM, 2019. Acute liver failure. Lancet, 394(10201):869-881.

[43]SuZQ, NingBT, FangH, et al., 2011. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn, 11(3):333-343.

[44]TakaokaA, WangZC, ChoiMK, et al., 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448(7152):501-505.

[45]VasudevanSO, BehlB, RathinamVA, 2023. Pyroptosis-induced inflammation and tissue damage. Semin Immunol, 69:101781.

[46]VerbekeJ, de BolleX, ArnouldT, 2023. When mitophagy dictates the outcome of cellular infection: the case of Brucella abortus. Autophagy, 19(11):3022-3023.

[47]WangDY, ZhangJB, JiangWK, et al., 2017. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 13(5):914-927.

[48]WangY, ChenQ, JiaoFZ, et al., 2021. Histone deacetylase 2 regulates ULK1 mediated pyroptosis during acute liver failure by the K68 acetylation site. Cell Death Dis, 12:55.

[49]YamamuraY, LeeWL, InoueK, et al., 2006. RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem, 281(8):5267-5276.

[50]YanWT, ZhaoWJ, HuXM, et al., 2023. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons. Neural Regen Res, 18(2):357-363.

[51]YangX, MaLM, ZhangJ, et al., 2023. Hypofucosylation of Unc5b regulated by Fut8 enhances macrophage emigration and prevents atherosclerosis. Cell Biosci, 13:13.

[52]YuXB, LiuX, LiuX, et al., 2023. Overexpression of CASP1 triggers acute promyelocytic leukemia cell pyroptosis and differentiation. Eur J Pharmacol, 945:175614.

[53]ZhengYF, SunWR, ShanC, et al., 2022. β‍-‍Hydroxybutyrate inhibits ferroptosis-mediated pancreatic damage in acute liver failure through the increase of H3K9bhb. Cell Rep, 41(12):111847.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE