Full Text:   <744>

Summary:  <75>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-02-26

Received: 2023-10-25

Revision Accepted: 2024-02-07

Crosschecked: 2025-02-27

Cited: 0

Clicked: 913

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Michael N. ROMANOV

https://orcid.org/0000-0003-3584-4644

Elena A. YILDIRIM

https://orcid.org/0000-0002-5846-5105

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.2 P.185-199

http://doi.org/10.1631/jzus.B2300767


Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers


Author(s):  Georgi Yu. LAPTEV, Daria G. TIURINA, Elena A. YILDIRIM, Elena P. GORFUNKEL, Larisa A. ILINA, Valentina A. FILIPPOVA, Andrei V. DUBROVIN, Alisa S. DUBROVINA, Evgeni A. BRAZHNIK, Natalia I. NOVIKOVA, Veronika K. MELIKIDI, Kseniya A. SOKOLOVA, Ekaterina S. PONOMAREVA, Vasiliy A. ZAIKIN, Darren K. GRIFFIN, Michael N. ROMANOV

Affiliation(s):  Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia; more

Corresponding email(s):   deniz@biotrof.ru, m.romanov@kent.ac.uk

Key Words:  Glyphosate, Antibiotic, Anticoccidial drug, Pancreas, Broiler, Gene expression, Blood parameter


Georgi Yu. LAPTEV, Daria G. TIURINA, Elena A. YILDIRIM, Elena P. GORFUNKEL, Larisa A. ILINA, Valentina A. FILIPPOVA, Andrei V. DUBROVIN, Alisa S. DUBROVINA, Evgeni A. BRAZHNIK, Natalia I. NOVIKOVA, Veronika K. MELIKIDI, Kseniya A. SOKOLOVA, Ekaterina S. PONOMAREVA, Vasiliy A. ZAIKIN, Darren K. GRIFFIN, Michael N. ROMANOV. Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers[J]. Journal of Zhejiang University Science B, 2025, 26(2): 185-199.

@article{title="Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers",
author="Georgi Yu. LAPTEV, Daria G. TIURINA, Elena A. YILDIRIM, Elena P. GORFUNKEL, Larisa A. ILINA, Valentina A. FILIPPOVA, Andrei V. DUBROVIN, Alisa S. DUBROVINA, Evgeni A. BRAZHNIK, Natalia I. NOVIKOVA, Veronika K. MELIKIDI, Kseniya A. SOKOLOVA, Ekaterina S. PONOMAREVA, Vasiliy A. ZAIKIN, Darren K. GRIFFIN, Michael N. ROMANOV",
journal="Journal of Zhejiang University Science B",
volume="26",
number="2",
pages="185-199",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300767"
}

%0 Journal Article
%T Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers
%A Georgi Yu. LAPTEV
%A Daria G. TIURINA
%A Elena A. YILDIRIM
%A Elena P. GORFUNKEL
%A Larisa A. ILINA
%A Valentina A. FILIPPOVA
%A Andrei V. DUBROVIN
%A Alisa S. DUBROVINA
%A Evgeni A. BRAZHNIK
%A Natalia I. NOVIKOVA
%A Veronika K. MELIKIDI
%A Kseniya A. SOKOLOVA
%A Ekaterina S. PONOMAREVA
%A Vasiliy A. ZAIKIN
%A Darren K. GRIFFIN
%A Michael N. ROMANOV
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 2
%P 185-199
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300767

TY - JOUR
T1 - Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers
A1 - Georgi Yu. LAPTEV
A1 - Daria G. TIURINA
A1 - Elena A. YILDIRIM
A1 - Elena P. GORFUNKEL
A1 - Larisa A. ILINA
A1 - Valentina A. FILIPPOVA
A1 - Andrei V. DUBROVIN
A1 - Alisa S. DUBROVINA
A1 - Evgeni A. BRAZHNIK
A1 - Natalia I. NOVIKOVA
A1 - Veronika K. MELIKIDI
A1 - Kseniya A. SOKOLOVA
A1 - Ekaterina S. PONOMAREVA
A1 - Vasiliy A. ZAIKIN
A1 - Darren K. GRIFFIN
A1 - Michael N. ROMANOV
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 2
SP - 185
EP - 199
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300767


Abstract: 
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic (ANT) application and affect gene expression. In this study, we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate (GLY), two ANTs, and one anticoccidial drug (AD). A total of 260 Ross 308 broilers aged 1‍–‍40 d were divided into the following four groups of 65 birds each: control group, which was fed the main diet (MD), and three experimental groups, which were fed MD supplemented with GLY, GLY+ANTs (enrofloxacin and colistin methanesulfonate), and GLY+AD (ammonium maduramicin), respectively. The results showed that the addition of GLY, GLY+ANTs, and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance. In particular, genes related to inflammation and apoptosis (interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 6 (CASP6)) were downregulated by up to 99.1%, and those related to antioxidant protection (catalase (CAT), superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (PRDX6)) by up to 98.6%, compared to controls. There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups, and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood. The changes revealed in gene expression and blood indices in response to GLY, ANTs, and AD provide insights into the possible mechanisms of action of these agents at the molecular level. Specifically, these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY, GLY+ANTs, and GLY+AD in broilers.

草甘膦、抗生素和抗球虫药物对肉鸡胰腺基因表达和血液生理的影响

Georgi Yu. LAPTEV1, Daria G. TIURINA1, Elena A. YILDIRIM1,2, Elena P. GORFUNKEL1, Larisa A. ILINA1,2, Valentina A. FILIPPOVA1,2, Andrei V. DUBROVIN1, Alisa S. DUBROVINA1, Evgeni A. BRAZHNIK1, Natalia I. NOVIKOVA1, Veronika K. MELIKIDI1, Kseniya A. SOKOLOVA1, Ekaterina S. PONOMAREVA1, Vasiliy A. ZAIKIN1, Darren K. GRIFFIN3,4, Michael N. ROMANOV2,3,4,5
1Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
2Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia
3School of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
4Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
5L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast 142132, Russia
摘要:肉鸡饲料中的药物和农药残留可能会影响抗生素(ANT)的治疗和生产效益,进而影响基因表达。在本研究中,我们分析了在施用最大残留限量的除草剂草甘膦(GLY)、两种ANT和一种抗球虫药物(AD)后,13个关键胰腺基因的表达和血液生理参数的变化。将260只1~40日龄的Ross 308肉鸡分为以下四组,每组65只:(1)对照组,饲喂基础日粮(MD);(2)GLY组,饲喂添加GLY的MD;(3)GLY+ANTs组,饲喂添加GLY和ANT的MD;(4)GLY+AD组,饲喂添加GLY和AD的MD。结果显示,添加GLY、GLY+ANTs和GLY+AD会导致多个具有生理和经济意义的基因表达发生显著变化。特别是,与炎症和凋亡相关的基因(如白细胞介素6(IL6)、前列腺素内过氧化物合酶2(PTGS2)和半胱天冬酶6(CASP6))的表达下调高达99.1%,而与抗氧化保护相关的基因(如过氧化氢酶(CAT)、超氧化物歧化酶1(SOD1)和过氧化还原酶6(PRDX6))的表达下调高达98.6%。实验组中还观察到血清免疫学特性值显著下降,某些基因表达的变化与胰腺功能和血液变化一致。GLY、ANT和AD引起的基因表达和血液指标变化揭示了这些物质在分子水平上的可能作用机制,同时也表明肉鸡克服GLY、GLY+ANT和GLY+AD负面影响的生理机制。

关键词:草甘膦;抗生素;抗球虫药物;胰腺;肉鸡;基因表达;血液指标

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdedosuO, BadmusA, AdelekeG, et al., 2017. Telfairia occidentalis seed extract protects against oxidative stress, inflammation and some haematological disorders associated with atrazine-induced prostate cancer in rats. Eur J Cancer, 72(Suppl 1):S94.

[2]AttiaY, El-KelawyM, Al-HarthiM, et al., 2020. Impact of multienzymes dose supplemented continuously or intermittently in drinking water on growth performance, nutrient digestibility, and blood constituents of broiler chickens. Animals, 10(3):375.

[3]AttiaYA, El-TahawyWS, El-HamidA, et al., 2014. Effect of feed form, pellet diameter and enzymes supplementation on growth performance and nutrient digestibility of broiler during days 21-37 of age. Arch Anim Breed, 57:34.

[4]AttiaYA, Al-HarthiMA, El-ShafeyAS, 2020. Influence of different time and frequency of multienzyme application on the efficiency of broiler chicken rearing and some selected metabolic indicators. Animals, 10(3):450.

[5]Aviagen, 2002. Ross Broiler Management Manual. Aviagen, Newbridge, UK.

[6]Aviagen, 2014. Ross 308 Broiler: Nutrition Specifications. Aviagen, Newbridge, UK.

[7]BallmerPE, 2001. Causes and mechanisms of hypoalbuminaemia. Clin Nutr, 20(3):271-273.

[8]BanerjeeS, SarA, MisraA, et al., 2018. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology, 164(2):142-153.

[9]BondarenkoYV, OstapenkoVI, BulchenkoIA, et al., 2013. Sexual dimorphism and sex determination of broilers of the Ross 308 cross. Ptakhivnytstvo, 69:51-54 (in Russian).

[10]CattaniD, CesconettoPA, TavaresMK, et al., 2017. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology, 387:67-80.

[11]ChapmanHD, JeffersTK, WilliamsRB, 2010. Forty years of monensin for the control of coccidiosis in poultry. Poult Sci, 89(9):1788-1801.

[12]ChoiJH, LeeK, KimDW, et al., 2018. Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poult Sci, 97(3):970-979.

[13]ClementeJC, UrsellLK, ParfreyLW, et al., 2012. The impact of the gut microbiota on human health: an integrative view. Cell, 148(6):1258-1270.

[14]Costas-FerreiraC, DuránR, FaroLRF, 2022. Toxic effects of glyphosate on the nervous system: a systematic review. Int J Mol Sci, 23(9):4605.

[15]CrayC, ZaiasJ, AltmanNH, 2009. Acute phase response in animals: a review. Comp Med, 59(6):517-526.

[16]DagliAJ, ShaikhWA, 1983. Pancreatic involvement in malathion-anticholinesterase insecticide intoxication a study of 75 cases. Br J Clin Pract, 37(7-8):270-272.

[17]DayanFE, BarkerA, BoughR, et al., 2019. 4.04 - Herbicide mechanisms of action and resistance. Compr Biotechnol, 4:36-48.

[18]DegterevA, BoyceM, YuanJY, 2003. A decade of caspases. Oncogene, 22(53):8543-8567.

[19]DukeSO, 2018. The history and current status of glyphosate. Pest Manag Sci, 74(5):1027-1034.

[20]DuongHQ, YouKS, OhS, et al., 2017. Silencing of NRF2 reduces the expression of ALDH1A1 and ALDH3A1 and sensitizes to 5-FU in pancreatic cancer cells. Antioxidants, 6(3):52.

[21]EgorovIA, ManukyanVA, LenkovaTN, et al., 2013. Methodology for scientific and production research on poultry feeding. molecular genetic methods for determining gut microflora. In: Fisinin VI (Ed.), Russian Academy of Agricultural Sciences. State Scientific Institution All-Russian Research and Technological Institute of Poultry Farming of the Russian Agricultural Academy, Sergiev Posad, Russia (in Russian).

[22]EleiwaNZ, El-ShabrawiAA, IbrahimD, et al., 2023. Dietary curcumin modulating effect on performance, antioxidant status, and immune-related response of broiler chickens exposed to imidacloprid insecticide. Animals, 13(23):3650.

[23]EvanGI, VousdenKH, 2001. Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835):342-348.

[24]EvrardE, MarchandJ, TheronM, et al., 2010. Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus. Comp Biochem Physiol Part C Toxicol Pharmacol, 152(3):321-331.

[25]FisininVI, EgorovIA, DraganovIF, 2011. Feeding of Poultry: A Textbook. GEOTAR-Media, Moscow, Russia (in Russian).

[26]GaoMC, ZhuHJ, GuoJM, et al., 2022a. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. Fish Shellfish Immunol, 131:‍312-322.

[27]GaoMC, YangNX, LeiYT, et al., 2022b. Tannic acid antagonizes atrazine exposure-induced autophagy and DNA damage crosstalk in grass carp hepatocytes via NO/iNOS/NF-‍κB signaling pathway to maintain stable immune function. Fish Shellfish Immunol, 131:1075-1084.

[28]GrozinaAA, IlinaLA, LaptevGY, et al., 2023. Probiotics as an alternative to antibiotics in modulating the intestinal microbiota and performance of broiler chickens. J Appl Microbiol, 134(9):lxad213.

[29]HaiserHJ, TurnbaughPJ, 2013. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res, 69(1):21-31.

[30]HalperJ, BurtDW, RomanovMN, 2004. On reassessment of the chicken TGFB4 gene as TGFB1. Growth Factors, 22(2):121-122.

[31]HengartnerMO, 2000. The biochemistry of apoptosis. Nature, 407(6805):770-776.

[32]JohnstoneRW, RuefliAA, LoweSW, 2002. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 108(2):153-164.

[33]KaiserJT, ClausenT, BourenkowGP, et al., 2000. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly. J Mol Biol, 297(2):451-464.

[34]KammonAM, BrarRS, SodhiS, et al., 2011. Chlorpyrifos chronic toxicity in broilers and effect of vitamin C. Open Vet J, 1(1):21-27.

[35]KaraffováV, BobíkováK, HusákováE, et al., 2015. Interaction of TGF-β4 and IL-17 with IgA secretion in the intestine of chickens fed with E. faecium AL41 and challenged with S. Enteritidis. Res Vet Sci, 100:75-79.

[36]KarputIM, 1993. Immunology and Immunopathology of Diseases of Young Animals. Urajay, Minsk, Belarus (in Russian).

[37]KlümperW, QaimM, 2014. A meta-analysis of the impacts of genetically modified crops. PLoS ONE, 9(11):e111629.

[38]KochishII, BrazhnikEA, VorobyovNI, et al., 2023a. Features of fractal conformity and bioconsolidation in the early myogenesis gene expression and their relationship to the genetic diversity of chicken breeds. Animals, 13(3):521.

[39]KochishII, TitovVY, NikonovIN, et al., 2023b. Unraveling signatures of chicken genetic diversity and divergent selection in breed-specific patterns of early myogenesis, nitric oxide metabolism and post-hatch growth. Front Genet, 13:1092242.

[40]KolyakovYE, 1990. Veterinary Immunology. Agropromizdat, Moscow, Russia (in Russian).

[41]KostynaMA, 1983. Determination of classes of immunoglobulins by the method of discrete sedimentation. Problems of Increasing the Resistance of Newborn Animals: Collection of Scientific Papers of VNIINBZh, p.‍76-80 (in Russian).

[42]KreutzLC, PavanTR, AlvesAG, et al., 2014. Increased immunoglobulin production in silver catfish (Rhamdia quelen) exposed to agrichemicals. Braz J Med Biol Res, 47(6):499-504.

[43]KrishnanJ, SelvarajooK, TsuchiyaM, et al., 2007. Toll-like receptor signal transduction. Exp Mol Med, 39(4):‍421-438.

[44]LaptevG, TurinaD, YildirimE, et al., 2023. Analysis of changes in broiler microbiome biodiversity parameters due to intake of glyphosate and probiotic Bacillus sp. GL-8 using next-generation sequencing. In: Ronzhin A, Kostyaev A (Eds.), Agriculture Digitalization and Organic Production. Proceedings of the Third International Conference on Agriculture Digitalization and Organic Production, Springer, Singapore, p.161-170.

[45]LaptevGY, FilippovaVA, KochishII, et al., 2019. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and fed a phytobiotic. Animals, 9(9):615.

[46]LaptevGY, YildirimEA, IlinaLA, et al., 2021. Effects of essential oils-based supplement and Salmonella infection on gene expression, blood parameters, cecal microbiome, and egg production in laying hens. Animals, 11(2):360.

[47]LevittDG, LevittMD, 2016. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med, 9:‍229-255.

[48]LiuRH, JiaTT, CuiY, et al., 2018. The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol Trace Elem Res, 184(1):240-246.

[49]LivakKJ, SchmittgenTD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408.

[50]LovakovićBT, PizentA, KašubaV, et al., 2017. Effects of sub-chronic exposure to terbuthylazine on DNA damage, oxidative stress and parent compound/metabolite levels in adult male rats. Food Chem Toxicol, 108:93-103.

[51]LoweSW, LinAW, 2000. Apoptosis in cancer. Carcinogenesis, 21(3):485-495.

[52]MaJG, LiXY, 2015. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate. Chemosphere, 128:293-298.

[53]MaJG, BuYZ, LiXY, 2015. Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate. Environ Toxicol Pharmacol, 39(1):1-8.

[54]MaggiF, la CeciliaD, TangFHM, et al., 2020. The global environmental hazard of glyphosate use. Sci Total Environ, 717:137167.

[55]ManneV, HandaP, KowdleyKV, 2018. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis, 22(1):23-37.

[56]MartínezMA, AresI, RodríguezJL, et al., 2018. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ Res, 161:212-219.

[57]MenshikovVV, 1997. Clinical Diagnosis – Laboratory Basics. Labinform, Moscow, Russia (in Russian).

[58]Meza CerdaMIM, GrayR, HigginsDP, 2020. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. PeerJ, 8:e10306.

[59]MorikawaK, WatabeH, AraakeM, et al., 1996. Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob. Agents Chemother, 40(6):1366-1370.

[60]NikolaienkoVM, TsynovyiOV, TereschenkoOV, 2011. Method for Determination of Percent Ratio of Protein Fractions in Blood Serum of Broiler Chick. UA Patent 57682 (in Ukrainian with English information).

[61]NoackS, ChapmanHD, SelzerPM, 2019. Anticoccidial drugs of the livestock industry. Parasitol Res, 118(7):2009-2026.

[62]OgnjanovićBI, MarkovićSD, PavlovićSZ, et al., 2008. Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res, 57(3):403-411.

[63]PalominoDCT, MartiLC, 2015. Chemokines and immunity. Einstein (Sao Paulo), 13(3):469-473.

[64]PandeyA, DabhadeP, KumarasamyA, 2019. Inflammatory effects of subacute exposure of Roundup in rat liver and adipose tissue. Dose Response, 17(2):1559325819843380.

[65]ParkJH, HongS, JunDW, et al., 2021. Prevalence and clinical characteristics of antibiotics associated drug induced liver injury. Ann Transl Med, 9(8):642.

[66]PatrevaLS, KovalenkoVP, TereshchenkoOV, et al., 2010. Poultry Meat Production: Textbook. MDAU, Mykolaiv, Ukraine (in Ukrainian).

[67]PeillexC, PelletierM, 2020. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol, 17(1):163-174.

[68]PradeepM, 2014. Application of acute phase proteins as biomarkers in modern veterinary practice. Ind J Vet Anim Sci Res, 43(1):1-13.

[69]ReatoG, CuffiniAM, TullioV, et al., 2004. Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. Int J Antimicrob Agents, 23(2):150-154.

[70]RodesL, KhanA, PaulA, et al., 2013. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. J Microbiol Biotechnol, 23(4):518-526.

[71]RomanovMN, KochishII, TitovVY, et al., 2022a. Breed-specific patterns of early myogenesis, nitric oxide metabolism, and post-hatch growth in relation to genetic diversity and divergent selection in chickens. Life of Genomes: Abstracts of the International Conference, Kazan, Russia, p.43.

[72]RomanovMN, GrozinaAA, IlinaLA, et al., 2022b. From feed regulation to regulated feeding: intestinal microbiome and performance optimization in broiler chickens in response to antibiotic and probiotic treatment. Life of Genomes: Abstracts of the International Conference, Kazan, Russia, p.44-45.

[73]RostamiS, AkhlaghiA, AhangariYJ, et al., 2020. Effects in broiler hens of genetic lines differing in fertility, biotin supplementation, and age on relative abundance of oviductal transforming growth factor-‍β and carbonic anhydrase mRNA transcripts. Anim Reprod Sci, 219:106480.

[74]SadovnikovNV, PridybailoND, VereshchakNA, 2009. General and Special Methods of Blood Testing of Birds of Industrial Crosses. Ural State Agricultural Academy, NPP “AVIVAC”, Yekaterinburg – St. Petersburg, Russia (in Russian).

[75]SanPiN, 2021. Sanitary Rules and Norms: SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans”, Registration No. 62296. National Standards of Russian Federation (in Russian).

[76]SantosT, CancianG, NeodiniDNR, et al., 2015. Toxicological evaluation of ametryn effects in Wistar rats. Exp Toxicol Pathol, 67(10):525-532.

[77]SlackJMW, 1995. Developmental biology of the pancreas. Development, 121(6):1569-1580.

[78]ŠtefanacT, GrgasD, DragičevićTL, 2021. Xenobiotics—division and methods of detection: a review. J Xenobiot, 11(4):130-141.

[79]StreltsovVA, RyabichevaAE, 2018. Results of raising broilers at different slaughter dates. Current Problems of Intensive Development of Livestock Farming: Collection of Scientific Papers, p.325-332 (in Russian).

[80]SuraiPF, 2002. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press, Nottingham, UK.

[81]SuraiPF, 2006. Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK.

[82]TemperleyND, BerlinS, PatonIR, et al., 2008. Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics, 9:62.

[83]TereshchenkoOV, RyabininSV, 2009. Method of enzyme immunoassay and its use in practice. Ptakhivnytstvo, 63:274-278 (in Ukrainian with English summary).

[84]TitsaNW, 1997. Encyclopedia of Clinical Laboratory Tests. Labinform, Moscow, Russia (in Russian).

[85]TizheE, IbrahimN, FatihuM, et al., 2018. Pancreatic function and histoarchitecture in Wistar rats following chronic exposure to Bushfire®: the mitigating role of zinc. J Int Med Res, 46(8):3296-3305.

[86]TizheEV, IbrahimNDG, FatihuMY, et al., 2014. Influence of zinc supplementation on histopathological changes in the stomach, liver, kidney, brain, pancreas and spleen during subchronic exposure of Wistar rats to glyphosate. Comp Clin Pathol, 23(5):1535-1543.

[87]TyurinaDG, LaptevGY, YildirimEA, et al., 2022. Influence of antibiotics, glyphosate and a Bacillus sp. strain on productivity performance and gene expression in cross Ross 308 broiler chickens (Gallus gallus L.). Sel’skokhozyaistvennaya Biol, 57(6):1147-1165.

[88]VleemingW, RambaliB, OpperhuizenA, 2002. The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res, 4(3):341-348.

[89]WangM, WangL, ShabbirS, et al., 2023. Effects of thiram exposure on liver metabolism of chickens. Front Vet Sci, 10:1139815.

[90]WuGY, FangYZ, YangS, et al., 2004. Glutathione metabolism and its implications for health. J Nutr, 134(3):489-492.

[91]YildirimEA, LaptevGY, TiurinaDG, et al., 2024. Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet Res Commun, 48(1):153-164.

[92]YooHH, KimIS, YooDH, et al., 2016. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. J Hypertens, 34(1):156-162.

[93]YueH, LeiXW, YangFL, et al., 2010. Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virol Sin, 25(6):425-431.

[94]ZekaF, VanderheydenK, de SmetE, et al., 2016. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Sci Rep, 6:21418.

[95]ZhanJ, LiangYR, LiuDH, et al., 2018. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome, 6:224.

[96]ZhangH, MehmoodK, LiK, et al., 2018. Icariin ameliorate thiram-induced tibial dyschondroplasia via regulation of WNT4 and VEGF expression in broiler chickens. Front Pharmacol, 9:123.

[97]ZhangM, NiiT, IsobeN, et al., 2012. Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters. Poult Sci, 91(8):1997-2003.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE